
© 2003 Proligence, Inc. www.proligence.com Partitioning Demystified Page 1 of 11

p r o l i g e n c e
Empowering Intelligence

P a r t i t i o n i n g D e m y s t i f i e d

by Arup Nanda Proligence, Inc.

This is a companion paper for the presentation on Advanced Partitioning Concepts delivered at Oracle Technology
Symposium at Stamford, CT on March 27th and 28th, 2003 and is not intended to be an independent article and not
guaranteed to be error free. A more current copy of this article may be found at www.proligence.com.

Topic Covered

• Subpartitioning Challenges
• Plan Table Revisited
• Dbms_Xplan
• Partition Pruning
• Partition-Wise Joins
• Character Value In Range
• Multi-Column Keys
• Conversion To Partitioned Table
• Partition Exchange
• Analyzing Subpartitions
• Parallel Index Rebuilding
• The Rule Based Optimizer
• Coalesce –Vs- Merge
• Rebuilding Indexes

Subpartitioning Challenges

The rows from a subpartition of a table are obtained the
same way as in case of a partition, with a keyword after
the table. For instance the to select rows from a
subpartition SP1 of table TAB1, you would issue
SELECT … FROM TAB1 SUBPARTITION (SP1);

This same construct can be applied to DML statements
and utilities like export/import and SQL*Loader, too. For
instance to insert into a subpartition, you would issue
INSERT INTO TAB1 SUBPARTITION (SP1) …

In Export/Import, you would write
TABLE=TAB1:SP1

Information on storage of subpartitions can be obtained
from the DBA_SEGMENTS view. The column,
PARTITION_NAME is actually a misnomer; it refers to both
partitions and subpartitions. When the view was first
envisioned, the concept of subpartitions was not present
and hence, the column was named such and never
changed. In order to get information about a subpartition
SP1 in table TAB1, use the query as follows.

SELECT COLUMNS
FROM USER_SEGMENTS

WHERE SEGMENT_NAME = 'TAB1'
AND PARTITION_NAME = 'SP1';

While creating subpartitions, you could use a
subpartition template as follows to specify certain
parameters for the subpartitions as follows.

PARTITION BY RANGE (COL1)
SUBPARTITION BY HASH (COL2)
SUBAPARTITION TEMPLATE
(

SUBPARTITION SP1 TABLESPACE T1,
SUBPARTITION SP2 TABLESPACE T2

)
(

PARTITION P1 VALUES LESS THAN (101),
PARTITION P2 VALUES LESS THAN (201),

…

In this example, you specified only partition names and a
template for subpartition. The subpartitions are then
named like P1_SP1, P1_SP2, P2_SP1, P2_SP2 and so
on.

In 8i, only the tablespace names can be specified,
nothing else. In 9i you could specify even storage
parameters. The information on subpartitioning
templates can be found in the data dictionary view
DBA_SUBPARTITION_TEMPLATES.

Plan Table Revisited

You have been using plan_table to identify the optimizer
plan of a statement. In this table, three columns are
important for the partitioning option. The examples used
in the document will use this table and more details on
the columns will be provided.

PARTITION_START The ID of beginning partition

where the optimizer searches
first.

PARTITION_STOP The ID of the partition until
which the optimizer searches
for a match.

© 2003 Proligence, Inc. www.proligence.com Partitioning Demystified Page 2 of 11

PARTITION_ID The step id in plan_table that
decided the partition start and
stop

FILTER_PREDICATES The exact condition used to
evaluate partitions. (9i only)

The New Tool DBMS_XPLAN()

This is a new package useful for the querying the
plan_table data. Instead of writing a complicated sql
statement to query the plan_table, the call to the
package returns the rows in a tabular format. To select
the optimizer plan for the last explain plan statement,
use the query.

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY())

Note the use of the CAST TABLE(). The function
DBMS_XPLAN.DISPLAY is a pipelined function, i.e. it
returns rows in a tabular format like a cursor. The CAST
TABLE() makes it behave just like a table so that it can
be queried as one. This returns the results as the
formatted query from plan_table.

PLAN_TABLE_OUTPUT
--

--
| ID | OPERATION | NAME |
--
0	SELECT STATEMENT	
1	SORT AGGREGATE	
2	NESTED LOOPS	
3	TABLE ACCESS FULL	PTEST3HA
4	TABLE ACCESS FULL	PTEST3HB
--

The package has only this function, display() which
takes three arguments

TABLE_NAME The name of the table where the

optimization plan is stored; defaults to
PLAN_TABLE.

STATEMENT_ID The statement id from the plan table
mentioned earlier. By default, it takes the
last one, or NULL.

FORMAT This controls the way the display is
formatted. Explained later in detail .

Let's examine the last option FORMAT in detail. It
accepts four values as follows. The first value BASIC
provides only the minimum amount of information, as in
case of the example above. The value TYPICAL, which is
the default, provides a variety of the information useful
for understanding how the optimizer works. For instance,
in case of partitioned table operation, the columns
PARTITION_START and PARTITION_STOP are also
displayed, in addition to COST for that step, the number of

row expected to be retrieved and number of bytes those
rows may have. A setting of ALL displays all the
information that TYPICAL does but in addition also
explains the sql statements generate for parallel queries,
too. The last value SERIAL is similar to TYPICAL setting,
but the queries are explained in serial even if parallel
query will be used.

Partition Pruning

The main advantage of partitioning comes when the
optimizer chooses the data in a specific partition only,
where the requested data will be found and not all the
partitions. For instance, consider a table SALES
partitioned on ORDER_DATE, with one partition per
quarter. When the following query is issued

SELECT … FROM SALES
WHERE ORDER_DATE = ‘1/1/2003’

the optimizer does not go through the entire table, but
only the partition that houses the rows for the order date,
which is 2003 Quarter 1. This way, the full table scans
are limited to a specific partition only, saving significant
IO. But how can you can make sure that the partition
pruning has occurred? You can do so by querying the
plan_table. Consider a table created as follows

CREATE TABLE PTEST1
(

COL1 NUMBER,
COL2 VARCHAR2(200),
COL3 VARCHAR2(200)

)
PARTITION BY RANGE (COL1)
(
PARTITION P1 VALUES LESS THAN (1001),
PARTITION P2 VALUES LESS THAN (2001),
… and so on
PARTITION P9 VALUES LESS THAN (9001),
PARTITION PM VALUES LESS THAN (MAXVALUE)
);

Now we inserted several records into this table so that
each partition will have at least one record and then
analyzed the table.

INSERT INTO PTEST1
SELECT ROWNUM, OBJECT_TYPE, OBJECT_NAME
FROM ALL_OBJECTS
WHERE ROWNUM < 10001;
COMMIT;

Then we will examine the optimization plan for a query
that will be issued on the table PTEST1 as follows.

EXPLAIN PLAN FOR
SELECT * FROM PTEST1
WHERE COL1 = 1500;

© 2003 Proligence, Inc. www.proligence.com Partitioning Demystified Page 3 of 11

This populates the PLAN_TABLE with the optimization
plan records. Now select the plan using the query

SELECT ID, LPAD(' ',LEVEL*1-1)||OPERATION||'
'||OPTIONS||' ON '||OBJECT_NAME OPERATION,

PARTITION_START, PARTITION_STOP,
PARTITION_ID, FILTER_PREDICATES

FROM PLAN_TABLE
CONNECT BY PARENT_ID = PRIOR ID
START WITH PARENT_ID IS NULL;

The result is as follows

ID OPERATION PB PE PI
FILTER_PREDICATES
--- ------------------------------ -- -- --- -

 0 SELECT STATEMENT ON
 1 TABLE ACCESS FULL ON PTEST1 2 2 1
"PTEST1"."COL1"=1500

Note: This could have been done via dbms_xplan, too;
but to make it version independent, we will stick to
plan_table. Look at the PARTITION_START and
PARTITION_STOP columns; the values are 2 each –
indicating that the data will be selected from partition# 2
only. This is correct, since the value 1500 will be
available in partition 2 only. How does the optimizer
know which partition to look for? It does so at Step 1, as
indicated by the column PARTITION_ID in PLAN_TABLE.
Finally, we also know that the optimizer applied a filter to
retrieve rows as in the column FILTER_PREDICATES. This
explains how the optimizer came up with the plan and
which segments it will select from. While testing the
different partition pruning scenarios, this will be most
helpful.

Let's introduce another complexity to the mix -
subpartitioning. Consider a table created as follows.

CREATE TABLE PTEST2
(

COL1 NUMBER,
COL2 VARCHAR2(200),
COL3 VARCHAR2(200)

)
PARTITION BY RANGE (COL1)
SUBPARTITION BY HASH (COL2)
SUBPARTITIONS 4
(
PARTITION P1 VALUES LESS THAN (1001),
PARTITION P2 VALUES LESS THAN (2001),
and so on…
PARTITION P9 VALUES LESS THAN (9001),
PARTITION PM VALUES LESS THAN (MAXVALUE)
);

We will insert rows in the same manner as the example
earlier and analyze the table. Then we will issue the
query as follows.

EXPLAIN PLAN
SET STATEMENT_ID = 'PTEST2'
FOR
SELECT COL2 FROM PTEST2 WHERE COL1 = 9500
AND COL2 = 'PROCEDURE';

Here the query is forced to select from a subpartition, as
the filter is based on the partitioning as well as the
subpartitioning key. The query on PLAN_TABLE as
earlier shows the following output.

 ID OPERATION PB PE PI
FILTER_PREDICATES
---- ----------------------------- -- -- ---
--
 0 SELECT STATEMENT ON
 1 TABLE ACCESS FULL ON PTEST2 38 38 1
"PTEST2"."COL1"=9500 AND "PTEST2"."COL2"
='PROCEDURE'

Note the PARTITION_START column; it shows 38. But we
don't have that many partitions. Actually, it's the count of
subpartitions, not partitions. Since the number of
subpartitions in a partition is 4, the first 9 partitions
contain the first 36 subpartitions, making the 38th
subpartition the 2nd one in the 10th partition, i.e. partition
PM.

Partition-wise Joins

When a partitioned table is joined to another partitioned
table in such a way that partitioning keys determine the
filtering, the optimizer can determine that it does not
need to search the whole table, but just the partitions
where the data resides. For instance, consider the tables
SALES range partitioned on SALES_DATE column and
table REVENUE range partitioned on BOOKED_DATE column
and the partitioning schemes are the same. If the user
queries using the following

SELECT … FROM SALES S, REVENUE R
WHERE S.SALES_DATE = R.BOOKED_DATE

The optimizer knows that for each row in SALES, only
rows in a particular partition in REVENUE need to be
searched, not all. The important thing is to identify if such
elimination is indeed happening. Consider two tables
created as follows.

CREATE TABLE PTEST3A
(

COL1A NUMBER,
COL2A VARCHAR2(200),
COL3A VARCHAR2(200)

)

© 2003 Proligence, Inc. www.proligence.com Partitioning Demystified Page 4 of 11

PARTITION BY RANGE (COL1A)
(
PARTITION P1 VALUES LESS THAN (1001),
PARTITION P2 VALUES LESS THAN (2001),
and so on…
PARTITION P9 VALUES LESS THAN (9001),
PARTITION PM VALUES LESS THAN (MAXVALUE)
);

CREATE TABLE PTEST3B
(

COL1B NUMBER,
COL2B VARCHAR2(200),
COL3B VARCHAR2(200)

)
PARTITION BY RANGE (COL1B)
(
PARTITION P1 VALUES LESS THAN (1001),
PARTITION P2 VALUES LESS THAN (2001),
and so on…
PARTITION P9 VALUES LESS THAN (9001),
PARTITION PM VALUES LESS THAN (MAXVALUE)
);

We will insert data into both tables as follows.

INSERT INTO PTEST3A
SELECT ROWNUM, OBJECT_TYPE, OBJECT_NAME
FROM ALL_OBJECTS
WHERE ROWNUM < 10001;

INSERT INTO PTEST3B
SELECT ROWNUM, OBJECT_TYPE, OBJECT_NAME
FROM ALL_OBJECTS
WHERE ROWNUM < 10001;

If a user queries the tables in this manner

EXPLAIN PLAN
SET STATEMENT_ID = 'PTEST3' FOR
SELECT COUNT(*)
FROM PTEST3A , PTEST3B
WHERE PTEST3B.COL1B = PTEST3A.COL1A
AND PTEST3A.COL1A BETWEEN 1500 AND 1700;

and then selects from the plan_table, she gets

 ID OPERATION PB PE PI
---- ------------------------------ -- -- ---
FILTER_PREDICATES

 0 SELECT STATEMENT ON
 1 SORT AGGREGATE ON
 2 NESTED LOOPS ON
 3 TABLE ACCESS FULL ON PTEST3A 2 2 3
 "PTEST3A"."COL1A">=1500 AND
"PTEST3A"."COL1A"<=1700
 4 TABLE ACCESS FULL ON PTEST3B 2 2 4

"PTEST3B"."COL1B"="PTEST3A"."COL1A" AND
"PTEST3B"."COL1B">=1500 AND
"PTEST3B"."COL1B"<=1700

Note how only partitions 2 from each table were
subjected to Full Table Scans, not the entire table. The
optimizer determined these steps from the filter
predicates, easily explained in the output. This explains
how partition pruning has occurred.

WarningWarningWarningWarning: A caveat has to be introduced for the hash-
partitioned tables. Consider the following two tables.

CREATE TABLE PTEST3HA
(

COL1A NUMBER,
COL2A VARCHAR2(200),
COL3A VARCHAR2(200)

)
PARTITION BY HASH (COL1A)
PARTITIONS 4;

CREATE TABLE PTEST3HB
(

COL1B NUMBER,
COL2B VARCHAR2(200),
COL3B VARCHAR2(200)

)
PARTITION BY HASH (COL1B)
PARTITIONS 4;

Insert the data in the same way as before and analyze. If
we explain the same query as we did before, and select
from the plan table we get

 ID OPERATION PB PE PI
---- -------------------------------- -- -- --
FILTER_PREDICATES

 0 SELECT STATEMENT on
 1 SORT AGGREGATE on
 2 PARTITION HASH ALL on 1 4 2
 3 NESTED LOOPS on
 4 TABLE ACCESS FULL on PTEST3HA 1 4 2
"PTEST3HA"."COL1A">=1500 AND
"PTEST3HA"."COL1A"<=1700
 5 TABLE ACCESS FULL on PTEST3HB 1 4 2
"PTEST3HB"."COL1B"="PTEST3HA"."COL1A" AND
"PTEST3HB"."COL1B" >=1500 AND
"PTEST3HB"."COL1B"<=1700

Note the partition start and stop values, which are for all
the partitions. This query does not perform a partition
wise join; it simply scans the entire table, even though it
could have eliminated certain partitions. The filter
predicates indicate that the optimizer knew about the
rows to look for. So why it didn't do a partition wise join?

© 2003 Proligence, Inc. www.proligence.com Partitioning Demystified Page 5 of 11

The problem is the way hash partitioned table handles
joins. If the filter predicates are based on equality
operator only, then the optimizer can assign a specific
partition to the predicate by using the hash function. But
if the predicate is a range, the optimizer cannot decide
whether a particular partition may be a candidate. If the
same query explained earlier was written using COL1 =
some value, rather than COL1 BETWEEN two values,
then the partition-wise joins would have kicked in.
Therefore, be particularly careful in designing hash-
partitioned tables when there is a chance of joining with
range filtering.

Character Value in Range Partitioning

Almost all documents, articles, books and other
documentation talks about range partitioning using either
dates (the most common) or numbers. However, the
partitioning scheme could be extended to character
strings too. Consider the example of the employee table
where the last name column has been made a
partitioning key. Here is the proper syntax for designing
such a table.

CREATE TABLE EMP (…………)
PARTITION BY RANGE (LAST_NAME)
(
PARTITION P1 VALUES LESS THAN (‘D%’),
PARTITION P2 VALUES LESS THAN (‘G%’),
PARTITION PM VALUES LESS THAN (MAXVALUE)
);

Note the percentage character after the names. This
ensures that the ranges are well demarked by the
boundaries. This is as per a Note in MetaLink. Consider
this example of the table EMP described above.

SELECT * FROM EMP;

LAST_NAME FIRST_NAME
---------- ----------
CHAPLIN CHARLIE
D HARLEY
DAVIDSON HARLEY
EINSTEIN ALBERT

SELECT * FROM EMP PARTITION (P1);

LAST_NAME FIRST_NAME
---------- ----------
CHAPLIN CHARLIE
D HARLEY

SELECT * FROM EMP PARTITION (P2);

LAST_NAME FIRST_NAME
---------- ----------
DAVIDSON HARLEY
EINSTEIN ALBERT

Note the placement of two rows with last names starting
with D. The last name DAVIDSON is correctly placed in P2,
but the last name D is placed in P1. This is the expected
behavior, even though it does not seem like. In the
character set comparison, 'D' is less than 'D%', satisfying
the boundary of the partition P1. You might have
expected the last name D to go into the same partition as
DAVIDSON. Therefore, be careful while using the
scheme for partitioning.

Consider the same table in a slightly different way.

CREATE TABLE EMP (…………)
PARTITION BY RANGE (LAST_NAME)
(
PARTITION P1 VALUES LESS THAN (‘D’),
PARTITION P2 VALUES LESS THAN (‘G’),
PARTITION PM VALUES LESS THAN (MAXVALUE)
);

Note, there is no percentage sign after the character
values. Inserting the same data into it and selecting from
different partitions, we get

SELECT * FROM EMP2 PARTITION (P2);

LAST_NAME FIRST_NAME
---------- ----------
DAVIDSON HARLEY
EINSTEIN ALBERT
D HARLEY

Note how the partition P2 now has both DAVIDSON and
D, perhaps that will avoid potential problems in the
future. If you design character based range partitioning,
you must consider the use of the percentage character in
your boundary to eliminate confusion. If you use Oracle
9i, you can probably change most of your character
based partitioning schemes to LIST, a new option in that
version.

Multi-Column Partition Keys

Many people are under the impression that by specifying
more than one column as partitioning key creates a
multi-dimensional partitioned table. For example if you
have a table employee range partitioned on (DEPTNO,
ZIPCODE), does that make a two dimensional
partitioning scheme? Unfortunately, multi-column
partitioning keys are not intended for that objective at all.

The second column is for decision along the sequential
path only. Both values do not need to be satisfied for an
insert to go to a specific partition. The first column is
evaluated first; if it satisfies the condition, then the
second column is not even evaluated. Only if first column

© 2003 Proligence, Inc. www.proligence.com Partitioning Demystified Page 6 of 11

value is right on the boundary, the next column is
considered.

This is perhaps better explained using an example.
Consider the following example.
CREATE TABLE PTAB1
(
 COL1 NUMBER(10),
 COL2 NUMBER(10),
 COL3 VARCHAR2(20)
)
PARTITION BY RANGE (COL1, COL2)
(
PARTITION P1 VALUES LESS THAN (101, 101),
PARTITION P2 VALUES LESS THAN (201, 201)
)

SELECT * FROM PTAB1;

 COL1 COL2 COL3
---------- ---------- --------------------
 50 50 REC1
 50 150 REC3
 150 150 REC2
 150 50 REC4
 201 50 REC5
 201 101 REC6

Which partitions do you think the records will be?

SELECT * FROM PTAB1 PARTITION (P1);

 COL1 COL2 COL3
---------- ---------- --------------------
 50 50 REC1
 50 150 REC3

Record REC1 is in partition P1 as expected. But should
REC3 be on partition P1? The column COL1 is satisfied,
but COL2 is not. How does it end up in the partition P1?
The reason being, P1 is the first partition, it's evaluated
for the first column, col1, the value satisfies it and so
col2 is not even evaluated. The record goes to P1, even
though the second column col2 is not satisfied.

So, if the second column, COL2 is not even considered at
all in some cases, where does it come into play and why
would you define it? Consider the following example.

SELECT * FROM PTAB1 PARTITION (P2);

 COL1 COL2 COL3
---------- ---------- --------------------
 150 150 REC2
 150 50 REC4
 201 50 REC5
 201 101 REC6

The record REC2 satisfies both columns and is as
expected. In the record REC4, COL1 value is 150, so falls
under partition P2 as explained above. However, for
REC5 and REC6 – the COL1 value is 201, which is the
boundary value for first column of the partitioning key.
Only in that case, i.e. where the value of the first column
of partitioning keys is equal to the boundary value, the
second column comes into picture. The column COL2
values are less than the maximum value of column COL2
of partition P2. Therefore, the rows went there.

What happens when you insert a row with COL1 = 201
and COL2 = 201?

That insert will fail, since both columns cannot be outside
the bounds. Schematically, the decision to insert into a
partition can be explained as in Figure below.

With this information now, you can intelligently decide on
the partitioning columns. Consider another table.

CREATE TABLE PTAB2
(
 COL1 NUMBER(10),
 COL2 NUMBER(10),
 COL3 VARCHAR2(20)
)
PARTITION BY RANGE (COL1, COL2)
(
PARTITION P1 VALUES LESS THAN (101, 51),
PARTITION P2 VALUES LESS THAN (201, 51),
PARTITION P3 VALUES LESS THAN (201, 101),
PARTITION P4 VALUES LESS THAN (201, 201),
PARTITION P5 VALUES LESS THAN (201, 301)
)

SELECT * FROM PTAB2;

 COL1 COL2 COL3
---------- ---------- --------------------
 50 50 REC1

Consider 1st

Column
<

Boundary
Value

1st Partition

=
Boundary

Value

Consider 2nd
Column

<
Boundary

Value

2nd Partition

3rd Partition N

N

Y

Y

Y

© 2003 Proligence, Inc. www.proligence.com Partitioning Demystified Page 7 of 11

 50 150 REC3
 150 150 REC2
 150 50 REC4
 201 50 REC5
 201 150 REC6
 201 250 REC7

Guess the partitions the rows go into.

SELECT * FROM PTAB2 PARTITION (P1);

 COL1 COL2 COL3
---------- ---------- --------------------
 50 50 REC1
 50 150 REC3

This is as expected as explained above.

SELECT * FROM PTAB2 PARTITION (P2);

 COL1 COL2 COL3
---------- ---------- --------------------
 150 150 REC2
 150 50 REC4
 201 50 REC5

Records, REC2 and REC4 are expected as per the
explanation above. But, what about REC5? By now you
must have figured out the rationale of record rec5 going
into partition P2.

SELECT * FROM PTAB2 PARTITION (P4);

 COL1 COL2 COL3
---------- ---------- --------------------
 201 150 REC6

SELECT * FROM PTAB2 PARTITION (P5);

 COL1 COL2 COL3
---------- ---------- --------------------
 201 250 REC7

The logical follow up to this discussion is what happens
in case list partitioning where there is no concept of a
range, so there is no boundary value. Fortunately, list
partitioning does not allow multiple columns; so this
situation does not arise.

Conversion to Partitioned Table

As you explore more and more into partitioning and
understand its advantages, you are more likely than not
to introduce partitioning in your existing database. That
comes with the inevitable question - what is the best way
to convert non-partitioned tables to partitioned ones.
Oracle does document such a process in MetaLink Note
Id 1070693.6. In summary, the note specifies creating
an empty partitioned table similar to the source table and

then loading data into the target using direct insert; or
just creating the partitioned table as selecting from the
non-partitioned table using the NOLOGGING option.
These methods work. However, the biggest problem in
these is the space requirement. You must have exactly
the same amount of free space as your biggest table you
are going to partition. Since these methods have been
discussed in detail in the Note, they are not being
reproduced here.

In Oracle 9i, the online table redefinition feature using
DBMS_REDEFINITION package can be used to redefine
the table as partitioned without any downtime. While it
provides online access to the table while being
converted, the time, resource and space consumption is
extremely high.

The alternative approach – called split-split method
greatly alleviates the space problem. Essentially, in this
method, you would create the partitioned table with only
one partition first, split it at the lowest boundary point and
repeat the process until all the partitions are created.
This is best described using an example. Consider the
table NOPART as follows.

 COL1 NUMBER
 COL2 VARCHAR2(10)
 COL3 CHAR(2)

This table has one index IN_NOPART on column COL2 and
one constraint CK_PART, a check constraint stating that
COL3 is not null. It needs to be partitioned into 5
partitions like this.

PARTITION BY RANGE (COL1)
(
 PARTITION P1 VALUES LESS THAN (101),
 PARTITION P2 VALUES LESS THAN (201),
 PARTITION P3 VALUES LESS THAN (301),
 PARTITION P4 VALUES LESS THAN (401),
 PARTITION PM VALUES LESS THAN
(MAXVALUE)
)

Let's convert this table using the split-split method. First,
create a table PART as follows

CREATE TABLE PART
(
 COL1 NUMBER,
 COL2 VARCHAR2(10),
 COL3 CHAR(2)
)
NOLOGGING
PARTITION BY RANGE (COL1)
(
 PARTITION PM VALUES LESS THAN
(MAXVALUE)
);

© 2003 Proligence, Inc. www.proligence.com Partitioning Demystified Page 8 of 11

Note, only the maximum value partition has been
defined, not the entire set. We will also define the
indexes and constraints as seen in in the table NOPART.

CREATE INDEX IN_PART ON PART (COL2) LOCAL
NOLOGGING;

ALTER TABLE PART ADD CONSTRAINT CK_PART_01
CHECK (COL3 IS NOT NULL);

Next, we exchange the table NOPART with this partition

ALTER TABLE PART EXCHANGE PARTITION PM
WITH TABLE NOPART INCLUDING INDEXES;

This statement swaps the table's partition PM with the
table NOPART. The contents of NOPART are now in the PM
partition and the NOPART table is empty. Since this
operation merely changes the data dictionary and
doesn't physically move data, it doesn't generate redo
and is extremely quick. The clause INCLUDING INDEXES
swaps the indexes too.

Next, we will split this single partition, starting with the
lowest boundary, i.e. partition P1.

ALTER TABLE PART SPLIT PARTITION PM AT (101)
INTO (PARTITION P1, PARTITION PM);

This creates a new partition called P1 and moves the
rows with COL1 value less than 101 into this from PM.
Since the table is defined as NOLOGGING, this doesn't
generate much redo. After this operation, the partition
PM contains data for the partitions other than P1. Repeat
this splitting process, with P2 in mind this time.

ALTER TABLE PART SPLIT PARTITION PM AT (201)
INTO (PARTITION P2, PARTITION PM);

This process is repeated until the partition PM is split up
to P4, the last but one partition. Since the index is
defined as LOCAL, it will have been split, too along with
the table partition splitting command.

At the end of the process, we will have a table called
PART with all the data from NOPART and with the same
indexes and constraints. Now drop the table NOPART
and rename the table PART to NOPART so that
applications will be able to access this table. Also restore
the privileges associated with NOPART to PART.

However, renaming table does not rename the
constraints or indexes. Although applications may not be
affected by the new name of the index and constraints, it
may be necessary to change the names to avoid
confusion. The names are changed by the statements

ALTER INDEX IN_PART RENAME TO IN_NOPART;

ALTER TABLE NOPART RENAME CONSTRAINT
CK_PART_01 TO CK_NOPART_01;

The latter command is available in 9i only. If you are in 8i
and cannot do this, you could always drop the constraint
from the NOPART table first and then create the
constraint with NOVALIDATE option.

The advantage of this method is clear – minimum space
requirement. However, the partition split operation is still
time and resource consuming as compared to direct load
insert method. At your site, you should evaluate the pros
and cons of each and decide on the best method fit for
your purpose. This paper simply presents another
alternative.

Partition Exchange

The concept of exchanging a partition of a table with a
non-partitioned table is quite simple and fundamental in
partitioning. However, is it possible to exchange a
partition of a table with another partitioned table?

If the main table is composite partitioned and the sub
partitioning scheme is exactly same as the partitioning
scheme of the source table, then it is possible. For
instance, consider the following partitioning scheme for
the table MAIN

PARTITION BY RANGE (COL1)
SUBPARTITION BY HASH (COL2)
SUBPARTITIONS 2
(
PARTITION P1 VALUES LESS THAN (101)
(

SUBPARTITION SP1,
SUBPARTITION SP2

),
….

Now consider a table named CHILD partitioned as

PARTITION BY HASH (COL1)
PARTITIONS 2
(

PARTITION P1,
PARTITION P2

)

You can exchange the partition P1 of the table MAIN with
the table CHILD since the partitioning schemes of the
partition within the table and the table CHILD are
identical.

Subpartition Statistics

© 2003 Proligence, Inc. www.proligence.com Partitioning Demystified Page 9 of 11

This is one tricky part of subpartitioning not very well
documented and clear in the manuals. You must be
using DBMS_STATS package for quite some time now to
collect statistics. To collect statistics for the tables and
the sub-objects under them, e.g. partitions and
subpartitions, the function under the package named
GATHER_TABLE_STATS is used. The function has two little
known parameters that needs to be set for proper
statistics collection.

PARTNAME
This parameter is set to collect statistics for only the
named partition within the table, not for the entire table.
However, this is a misnomer. This can be used to collect
the stats for a specific subpartition, too, if named here.

GRANULARITY
This parameter instructs the package to collect statistics
at different levels and cascade down to other sub-
objects. It accepts several values. The default, named
DEFAULT, instructs the package to collect global statistics
and on the partitions only. The value PARTITION instructs
the package to collect stats at the partition level.
However, setting these values will not collect stats at the
subpartition level, which can be collected by setting the
parameter to ALL or SUBPARTITON.

For instance, consider the table created as follows.

CREATE TABLE SPART1
(
 COL1 NUMBER,
 COL2 NUMBER,
 COL3 VARCHAR2(20)
)
PARTITION BY RANGE (COL1)
SUBPARTITION BY HASH (COL2)
SUBPARTITIONS 4
(
 PARTITION P1 VALUES LESS THAN (101),
 PARTITION P2 VALUES LESS THAN (201),
 PARTITION P3 VALUES LESS THAN (301),
 PARTITION P4 VALUES LESS THAN (401),
 PARTITION PM VALUES LESS THAN (MAXVALUE)
)

Analyze the table using the default value of granularity
as follows.

EXEC DBMS_STATS.GATHER_TABLE_STATS
(TABNAME=>'SPART1')

Note, we have not provided the granularity at all; since
the default value is to collect stats for the partitions only
and not for any of the subpartitions, the stats will not be
collected for the subpartitions. This can be verified by
issuing

SELECT PARTITION_NAME

FROM USER_TAB_SUBPARTITIONS
WHERE LAST_ANALYZED IS NOT NULL;

This will not return any rows. While we are on the
subject, let's analyze the other options here. A table can
have statistics at the table level only, called GLOBAL
statistics. If the partitions of the table are analyzed and
the optimizer can derive the global statstics from the
individual partitions, then the stats for the table are
supposed to be derived global. Let's examine each
option in detail.

EXEC DBMS_STATS.GATHER_TABLE_STATS
(TABNAME=>'SPART1', GRANULARITY=>'GLOBAL')

This collects stats at the global level only. The following
query confirms this.

SELECT LAST_ANALYZED, GLOBAL_STATS
FROM USER_TABLES WHERE TABLE_NAME = 'SPART1';

This returns

GLO LAST_ANAL
--- ---------
YES 10-MAR-03

The presence of global stats indicates that the table has
been analyzed as a whole but the optimizer will not know
the stats of individual partitions. This can be gathered by

EXEC DBMS_STATS.GATHER_TABLE_STATS
(TABNAME=>'SPART1', GRANULARITY=>'PARTITION')

This sets the stats at the partition level only. In this case
the global stats are not collected on the table and the
above query will say NO under GLOBAL_STATS.
However, the query

SELECT PARTITION_NAME, LAST_ANALYZED
FROM USER_TAB_PARTITIONS
WHERE LAST_ANALYZED IS NOT NULL;

will retrieve all the partitions. Another variation of the
package is shown below.

EXEC DBMS_STATS.GATHER_TABLE_STATS
(TABNAME=>'SPART1',
GRANULARITY=>'SUBPARTITION')

This collects stats on the subpartition level only and rolls
it up to infer the stats on the partition level; but it does
not collect global stats on the partitions itself.

The last value of the option, ALL, does all of these –
collects partition level, subpartition level stats as well as
the global stats on the subpartition, partition and table.

© 2003 Proligence, Inc. www.proligence.com Partitioning Demystified Page 10 of 11

Therefore, the default value of GRANULARITY parameter
in the stats gathering function does not collect stats on
subpartitions; you must set it to either SUBPARTITION or
ALL to gather stats.

In summary, here are the details on the setting of
granularity and the collection of statistics.

GRANULARITY Table

Global
Partition
Global

Partition
Statistics

Subpartition
Statistics

GLOBAL YES NO NO NO
PARTITION NO YES YES NO
DEFAULT YES YES YES NO
SUBPARTITION NO NO YES YES
ALL YES YES YES YES

Another interesting concept but not documented clearly
is the option to analyze subpartitions only. This can be
done by

EXEC DBMS_STATS.GATHER_TABLE_STATS
(TABNAME=>'SPART1', PART_NAME=>'P1_SYS123')

This will collect subpartition level stats on subpartition
P1_SYS123 only.

Parallel Index Rebuilding

When an index needs to be reorganized, or rebuilt, it can
be done by issuing a ALTER INDEX … REBUILD. But if an
index is partitioned, this statement cannot be used.
Rather the commands must be issued for each partition
(or subpartition) of the index. For instance, you would
issue

ALTER INDEX IN_PART REBUILD PARTITION P1;

One of the advantages of partitioning is the use of
parallel DML on the partitioned table. In this case, a
single query on the table actually spins off several
parallel query slaves and each of the slaves acts on a
separate partition, increasing the throughput of the
process. In several cases, more than one slave process
acts on each partition, thereby increasing the throughput
even more. However, while rebuilding a partitioned
index, parallel slaves cannot work with more than one
slave per partition. Even though the host could support it,
only one parallel query slave act on each partition of the
index to rebuild it, effectively limiting the throughput. To
circumvent this limitation, Oracle provides a package
called DBMS_PCLXUTIL that contains a procedure called
BUILD_PART_INDEX(). This procedure, when called,
spins off several dbms jobs and each job can work on
the partitions in parallel.

For instance, to rebuild the index IN_PART on partitioned
table PART with 4 partitions, we can call

EXEC DBMS_PCLXUTIL.BUILD_PART_INDEX
(TAB_NAME=>'PART', IDX_NAME=>'IN_PART',
JOBS_PER_BATCH=>2, PROCS_PER_JOB=>4)

This will kick off 2 jobs. Be sure to call SET
SERVEROUTPUT ON SIZE 99999 before this execute call.
It will display all the messages on the screen as follows.

INFO: JOB #1 CREATED FOR PARTITION P1 WITH 4
SLAVES
INFO: JOB #2 CREATED FOR PARTITION P3 WITH 4
SLAVES

Each job will kick off 4 slaves as per the PROC_PER_JOB
parameter, effectively employing 8 slaves. Normally, a
parallel DDL would have employed only 4 slaves (for 4
partitions).

However, this will not work for the index partitions
marked USABLE. To force the rebuilding of those
partitions, use the parameter FORCE_OPT and set it to
TRUE.

The biggest problem with this approach is the job
interface. Since the processes are actually jobs, the
package simply kicks off the jobs and returns the control
to the user. If the jobs fail for some reason, the user may
not even know about it. Check for the status of the jobs
in USER_JOBS and see if they failed and produced any
trace files.

Rule Based Optimizer

Can you use partitioning with RBO? The answer is, of
course you can. However, when partitioning was
introduced, RBO was considered legacy and Oracle
decided to gradually desupport it. This led to a general
stop in development of RBO and thus today it is blissfully
unaware of the several exciting developments,
partitioning included. Therefore, to exploit the full
advantage of partitioning, like partition pruning, partition-
wise joins, etc., you must use the Cost Based Optimizer
(CBO). If you use the RBO, and a table in the query is
partitioned, Oracle kicks in the CBO while optimizing it.
But the statistics are not present; so the CBO makes up
the statistics and this could lead to severely expensive
optimization plans and extremely poor performance.

So, although you can, you shouldn't use partitioning
when using the RBO.

Coalesce –vs- Merge

These two potentially confusing statements serve the
same purpose – reducing the number of partitions – are
applicable in different schemes. In a range or list
partitioned table, the partition boundaries are clearly
defined and the rows in a partition satisfy some condition

© 2003 Proligence, Inc. www.proligence.com Partitioning Demystified Page 11 of 11

dependent on the boundary values. ALTER TABLE …
MERGE PARTITION joins the two adjacent partitions and
sets the boundary values appropriately.

Consider the example of a table PART that is partitioned
by range to four different partitions named P1, P2, P3
and P4. To merge partitions P3 and P4 to make a
partition called P34, issue the statement

ALTER TABLE PART MERGE PARTITIONS P3, P4 INTO
PARTITION P34;

However, in hash-partitioned tables, there are no
boundary values and the rows are not decided as
candidates for the partitions based on some kind of
defined range. So, a merge will not be able to identify
and set specific boundaries. Rather, a new clause called
COALESCE is used to achieve the objective.

ALTER TABLE PART COALESCE;

In COALESCE, a specific partition, usually the last one,
is identified for elimination. All the rows in that partition
are supposed to be equally distributed over the
remaining partitions and the partition is dropped. In
practice, however, the rows are merged with the
adjacent partition.

Since this reduces the number of partition by 1, the total
number is not a power of 2 any more, making the
distribution of rows in all partitions unequal. To avoid this
problem issue the coalesce one more time to make the
partitions evenly loaded.

In summary, MERGE is for range and list partitioning
where the values are clearly identified for boundary
values and COALESCE is for hash partitions, to reduce the
number of partitions.

Rebuild Partition and Global Indexes

Oracle9iR2 now offers fast split partitioning. Typically
during a split operation, Oracle creates two new
partitions and then redistributes the rows from the source
partition to the new partitions. This is a very expensive
operation from the resource consumption point. In
addition, local index partitions become unusable.

With the fast split partitioning, if all the rows will exist in
the same partition after the partition split, Oracle simply
reuses the old partition and creates an empty partition.
Thus, a split operation becomes more like an operation
that just creates a new partition.

Global indexes become unusable when a partition is
rebuilt. However, in 9i, a new clause updates the global
indexes as well.

ALTER TABLE PTAB DROP PARTITION P2 UPDATE
GLOBAL INDEXES;

Other Questions

While using partitioning, should you use bind variables?

This is an interesting question. As we all know use of
bind variables eliminates the necessity of parsing of the
cursors and facilitates the reuse of the cursors.

In case of partitions, however, this poses a problematic
situation. Partition elimination and joins can occur only if
the optimizer knows the filtering predicate in advance.
The value of bind variables are not known until the
execution time, making the process of partition
elimination or joins impossible. Therefore, in order to
take advantage of these options, you should not use
bind variables.

In Oracle 9i, the first parse of the statement, called hard
parse, peeks into the value of the bind variable and
therefore can effect these optimization options. But, this
occurs only for the hard parse; subsequent parses still
go around the bind variable values.

How many partitions can be defined on a table?

Oracle uses a 2-byte field to store the number of
segments (partitions or subpartitions), which enables
2^16 or 65536 spaces. The oracle code therefore allows
one less than this number, which comes out to 65535.
However, this is a limit placed by Oracle software code,
a practical limit may be lower.

Remember, every time a query is parsed on a partitioned
object, the metadata (i.e. how many partitions, etc.) is
loaded into the cursor cache in SGA, meaning the SGA
should be large enough to handle a table with several
partitions.

About the Author

Arup Nanda has been Oracle DBA for last 10 years,
experiencing all aspects of database administration
along the way – from modeling to performance tuning to
disaster recovery planning. He is the founder of
Proligence, Inc. (www.proligence.com), a Norwalk,
Connecticut based company that provides specialized
Oracle database services like replication, disaster
recovery, parallel server, among others. Arup is an editor
of SELECT, the journal of International Oracle User
Group. He has written Oracle technical articles in several
national and international journals and presented in
several conferences including IOUG Live! He can be
reached at arup@proligence.com.

