Datawarehouse and Business Intelligence

Case Study: A Multi-Source Time Variant Datawarehouse
Arup Nanda, Proligence, Inc.
Introduction

Building a datawarehouse is not a challenge!

Do I sense nods of agreement, or eyes rolling with disbelief? Perhaps something in between, skepticism but with interest. Some people have held a long standing conviction that implementing a datawarehouse is a misery beyond comprehension – with problems spread all over the place – from people to technology to methodology and support; the list is countless. But then again, which IT project is not? Implementing datawarehouse is no more a challenge than any other project, a critical component of which is the choice of technology.
With Oracle as the datawarehouse database platform, the choice has becomes a good one, with the introduction of the newer Datawarehouse features in Oracle 9i Release 2. The other challenge is the problem associated with the ETL Tools, particularly their cost. Is it possible to create a world class datawarehouse without using any of those commercially available expensive ETL Tools, from Oracle as well as from third parties? In our case the answer was not a simple yes or no – we just had to do it.
In this paper, we will explore the development of a datawarehouse heading those challenges head on. The usual approach in most sessions I have attended or the papers I have read is to catalog the various technology options available to the user to achieve something. However, for someone designing a datawarehouse, the parade of features available is not going to very useful. What is necessary at that time is helping the reader in putting his or her best foot forward – a task more difficult than that appears to be. In this paper, we will explore several Oracle technology options available to build a datawarehouse, but instead of just displaying them in a showcase, we will put them in a context – a case study that will help the reader appreciate their value in the practical sense.

The other objective of presenting a case study is to facilitate learning. It is proven that we learn better when the teachings come in a flavor we can associate ourselves with. As children we learned valuable life lessons through stories and the tendency continues well into our adult life. We tend to learn better, or commit the concepts into the database inside our brains better when the preaching comes with a story we can associate with. That is the case behind providing a story along with the database features.
In this paper we will examine how a datawarehouse was developed using only Oracle 9i Release 2 features. All components – the ETL, the maintenance options, etc. were all created from commonly available toolkits such as Shell Scripts and PL/SQL.

The Background

Our datawarehouse was designed to hold information related to health insurance claims. The purpose behind storing the claims were several – the claims were analyzed for possible overpayment, or fraud; to find out the payout rate for types of procedures; to develop rules to allow or deny claims; and many more. As in case of any datawarehouse the claims are aggregated or rolled up to the claim level, from the individual line level as they are stored in the OLTP system.
The data comes from several customers of the company, which are essentially sources of the information. The OLTP database is owned by these customers and the datawarehouse have direct connections to some of them, via high speed T1 lines. Most of these customer databases are on Oracle, a few are on DB2. The structures of the tables from where the summary tables are generated in the DW are similar, but not identical. The most common dissimilarity is the names of the columns and their data types and precisions.

The data storage is generally driven by archival and purging requirements. As per government regulations, the data was supposed to be available for a minimum of certain number of quarters. In addition, all the customers had their owner requirements for online access – making the online storage of the data different for each customer. Since quarter is a common denominator in all cases, the data was partitioned in terms of quarters.
Since some of the customers allowed direct access to their database; database links could be created, if the source database was Oracle. This allowed the creation of tables using the Export/Import or the better Create Table As Select (CTAS) approach. The company was always on the lookout for new customers and therefore there was a constant addition of customers into the DW.

There were several summary tables based on the summary tables on the DW; these were implemented as Materialized Views (MVs). The idea was to create the possibility of query rewrite.

The Problem

With this background information in place, let’s explore the problems and how we resolved each of them. Here are the problems.

Irregular and Late Data
The data coming from the source was highly irregular n frequency and duration. Some customers were ready to send data the very next day after the quarter end is over; but mostly the availability of the data was sometime well into the next quarter. The irregular nature of the source data meant that the DW couldn’t be refreshed for a particular quarter at one time; each customer must be refreshed independently and separately.

Quarters Added Continuously

The tables were partitioned in terms of quarters. As time progressed, the partitions for new quarters were added to the tables. This process was of course continuous; however, there process of adding a partition to the table was fraught with errors and problems.
Archival Requirements Vary Across Customers

Just as the flow of data was irregular, the customers have their own set of rules on the retention of the data in the DW. This resulted in the storage data for the highest storage requirement, regardless of whether a customer really wanted that retention or not. This invariably resulted in wasted space and sometimes a dangerous possibility of a lawsuit for the online availability of the data when it was not needed.
Quick Retrieval of Archived Data

All the customers wanted the archived data to be available to them if need be. The restoration of the archived data should come quickly. The typical expectation was a few hours for a dataset size of several hundred Gigabytes. Since the restoration involved rebuilding the partitions, and that meant the impact on other customers, several problems erupted. The data was restored at a downtime when none existed and the unavailability of the data to other customers made them dissatisfied. The original customer who requested to restore the data was not happy either, with the long lead time.
Summary Table Refresh

Since the summary tables (implemented as Materialized Views) were immediately out of sync when the new data came or the old data was purged off. Since the purge and arrival of data was highly irregular the MVs were constantly out of sync and had to be refreshed, which was expensive in terms of processing power and unavailability to the customers. Since the downtime was sometimes intolerable the MVs were left with stale data. This discouraged the use of query rewrites, putting pressure on the main summary tables.
Customer Additions and Dropouts
As the company’s revenues depended on the customers, it was constantly adding customers to the process. However, after a trial period of six months or so, some customers also dropped out. The addition and deletion of customers also affected the data retention. This also put pressure on keeping the MVs fresh and as mentioned earlier, it was becoming impossible by the day.
The Requirements

The task given to us was to have the following in place.

Downtime Minimization for Refreshes

The downtime during refreshes, customer additions/deletions and archival/purging operations were quickly becoming the point of contention for most customers and they seriously affected the revenue streams of the company. The immediate need was to bring the downtime as much as possible, preferably to zero. The objective was to have absolutely no downtime at all, because the Service Level Agreement (SLA) the company had with the customers was a planned downtime of 12 hours a month only.
Easier Maintenance of Customers and Quarters

The task of maintaining the customers and quarters should be smooth and effortless. The requirement lifted a page from the Capability Maturity Model text – the process must be repeatable with accurate certainty. This invariably means crafting some sort of user friendly tool for the process.
Easier Purge and Archival

The current archival and purge operations were creation of a table and deletion from the existing table. This was very expensive in terms of rollback segment and redo requirements. The objective called for reducing these somehow. The archival and purge operations should not make the MVs stale drastically.
Easier Restoration

The current restoration process was creating enormous downtimes and made the MVs stale immediately. The new requirements called for changng this process with a goal of reducing the downtime to, understandably, zero.

Easier Backup

The backups were not affecting the availability, but RMAN backup of the live tablespaces was a burden on tape library. Since the customers were added constantly the backups of older quarters were immediately invalidated and therefore the backup was a continuous process. The new requirements called for minimized requirements for backup, if possible.
Full Suite of ETL

The requirements called for development of a full suite of Extraction, Transformation and Loading processes or procedures, without any diminished performance.
Only What’s Available.

To cap it all, the requirements called for development of this suite of tools to make all other requirements happen, with only what is commonly available with Oracle database Enterprise Edition (with Partitioning Option), i.e. SQL*Plus and PL/SQL and Shell Scripts. There was no provision of any third party ETL tool, not even Oracle’s Warehouse Builder.
The Solution
With this set of problems and requirements on hand, we will see how to archive our objective.

Partitioning

The two main variants in the dimensions of the database were the Customer and Quarter. Therefore these two became the cornerstone of the storage design. Since the database was on Oracle 9i, the new partitioning option LIST was very useful. This partitioning option allows us to specify discrete values for partitioning keys, not just ranges. An example is given below
PARTITION BY LIST (CUST_NAME)

(

 PARTITION P1 VALUES (‘CUST1’),
 PARTITION P2 VALUES (‘CUST2’),
 … and so on for all partitions …

 PARTITION PM VALUES (DEFAULT)

)

In this case, the partition P1 holds all rows with CUST_NAME = ‘CUST1’, P2 holds CUST_NAME = ‘CUST2’, etc. The partition PM holds all the rows for which the CUST_NAME is not defined. This default partition was introduced in Oracle 9i Release 2.
However our design called for a two-dimensional model for the two variants of the storage – customer and the quarter. Therefore the tables have to be Supartitioned, not just partitioned, i.e. the partitions have to be subdivided further. This model is slow known as Composite partitioning.
The only possible composite partitioning in this case is Range-List. The tables can be partitioned along the CLAIM_DATE column, which is a date. The partitioning scheme is RANGE, which allows partitions defined along quarters. These partitions are then sub-divided into subpartitions along the customer name using the LIST scheme. A typical storage clause of the table may look like the following for the summary tables composite partitioned along the RANGE (CLAIM_DATE) and LIST (CUST_NAME).
PARTITION BY RANGE (CLAIM_DATE)

SUBPARTITION BY LIST (CUST_NAME)

(

 PARTITION P1 VALUES LESS THAN (TO_DATE(‘2003/04/01’,’YYYY/MM/DD’)),

 (

 SUBPARTITION P1_SP1 VALUES (‘CUST1’),

 SUBPARTITION P1_SP2 VALUES (‘CUST2’),

 … and so on for all subpartitions …

 SUBPARTITION P1_SPM VALUES (DEFAULT)

),

 PARTITION P2 VALUES LESS THAN (TO_DATE(‘2003/07/01’,’YYYY/MM/DD’)),

 (

 SUBPARTITION P2_SP1 VALUES (‘CUST1’),

 SUBPARTITION P2_SP2 VALUES (‘CUST2’),

 … and so on for all subpartitions …

 SUBPARTITION P2_SPM VALUES (DEFAULT)

),

 … and so on for all the partitions …

 PARTITION PM VALUES LESS THAN (MAXVALUE)

 (

 SUBPARTITION PM_SP1 VALUES (‘CUST1’),

 SUBPARTITION PM_SP2 VALUES (‘CUST2’),

 … and so on for all subpartitions …

 SUBPARTITION PM_SPM VALUES (DEFAULT)

)

)

The important point to observe here is the presence of the Default value subpartitions in all partitions and finally a default value partition. The exact cause of defining the default value segments will be described later.

Another important point to note is the name of the subpartitions. By default the subpartitions are named in the format <partition_name>_<subpartition_name> where the <subpartition_name> is defined in the template. However, in this case we will be rolling in and out subpartitions; therefore a more understandable and intuitive naming convention was followed. The partitions were named in the format Y<yy>Q<q> where <yy> is the two digit year and <q> is the single digit quarter number in that year. Fro instance the quarter 3 in year 2003 will be referred to as Y03Q3 and that is the name of the partition.
The subpartitions are named after the customers. Since each subpartition hosts only a single customer, this naming convention makes sense. The subpartition for customer CUST1 in 2003 Quarter 3 is named Y03Q3_CUST1. When it is time to archive and purge off the customer for that quarter, the subpartition can simply be dropped. However, since the new partitions added as we progress along the time line will have the year and quarter information in them, the names of these partitions will be always unique, allowing us to restore the partitions of the past, if needed. The names will run out in year 2099; ninety six years from now! We have plenty of cushion.

Please note the last partition with the name Default is for any date that falls outside the maximum value for the defined partitions. For instance, in this case we have partitions defined for Year 1 Quarter 2 only. A batch date of July 1st in that year will not be any of the partitions; so it will be sent to this default partition. However, since we will have partitions defined for all possible dates, this default partition will be empty.

The following is a representation of the table and how it is partitioned and subpartitioned.

[image: image1.wmf]
Note the subpartition named Def. This holds all values for which a customer name does not correspond to any defined subpartition. Since we will have subpartitions for all the customers, anyway, this subpartition DEF will always be empty. Also, note that this subpartition exists for all partitions for all date ranges.

Indexes

The indexes of the tables are all defined as LOCAL and none of the indexes are UNIQUE. This design is deliberate. The advantages of declaring an index as LOCAL are many – the search on the index will always be equi-partitioned with the table and hence the search will be limited to a single partition (or subpartition) only. This itself gives a tremendous performance gains to all the queries.

A local index is defined in this context as composite partitioning in the same manner as the table the subpartitioning scheme is identical. For instance the index IN_TAB1_01 can be defined as

CREATE INDEX IN_TAB1_01 ON TAB1 (COL1, COL2)

LOCAL

(

 PARTITION P1

 (

 SUBPARTITION P1_SP1,

 SUBPARTITION P1_SP2,

 … and so on for all subpartitions …

 SUBPARTITION P1_SPM

),

 PARTITION P2
 (

 SUBPARTITION P2_SP1,

 SUBPARTITION P2_SP2,

 … and so on for all subpartitions …

 SUBPARTITION P2_SPM

),

 … and so on for all the partitions …

 PARTITION PM VALUES LESS THAN (MAXVALUE)

 (

 SUBPARTITION PM_SP1,

 SUBPARTITION PM_SP2,

 … and so on for all subpartitions …

 SUBPARTITION PM_SPM

)

)

Note here the VALUES clause for the partitions and subpartitions have not been defined here. Since the index is LOCAL, the partitioning scheme and the names of the components must be same. Actually there was no need to spell out the names of partitions and subpartitions; but we did so for a reason we will see later.

None of the indexes are defined UNIQUE deliberately. If the index is UNIQUE, it must be GLOBAL, not LOCAL. The global indexes need extra maintenance; for example in case of partition dropping or adding. They will also not help much in performance in partition pruning or partition-wise joins. Since the goal is to minimize the downtime during the partition operations, the downtime for rebuilding the index could not be accommodated within the framework of the requirements and hence we decided not have any index as Unique. In a typical DW environment that may be acceptable as constraints are not enforced, rather assumed to be correct, as we will see later.

Tablespaces

Each of these subpartitions is located in a separate tablespace named after it. This allows the tablespace to be dropped and archived off. Also, if a problem ever happens on a data file of the tablespace, the problem will be limited to that subpartition only. The subpartitions of the table are stored in a tablespace named in the format <SubPartition_Name>_DATA, e.g. Y03Q3_CUST1_DATA. Similarly, the index subpartitions are stored in the tablespaces named in the format <SubPartition_Name>_INDX.

All the indexes of the table reside on the same tablespace as defined for that partition. For instance, the table TAB1 has three indexes IN_TAB1_01, IN_TAB1_02 and IN_TAB1_03. The subpartitions Y03Q3_CUST1 of all these indexes reside on tablespace Y03Q3_CUST1_INDX. This may defy conventional wisdom and may need further elaboration.
Putting indexes and tables in separate tablespaces has been a very common practice. Most people assume that the reason is performance – the index and tables are in different tablespace, and therefore different filesystems – and thus the disk contentions are avoided. This was probably true about ten years ago; but with today’s highly performant disk subsystems with on-board cache, the disk contention may not be a perceptible issue at all. The actual reason for separating index and tables into different tablespaces may be to aid management and administration. A block corruption in an index tablespace can be easily fixed by dropping and recreating that index; but for a table, it may need tablespace recovery. Therefore, in our design, we have separated tables and indexes, but further division within the index tablespace for individual indexes do not make any sense. When a subpartition of the table is dropped, so are the corresponding subpartitions of all the indexes. When a subpartition is added to the table, the corresponding subpartitions of all the indexes are also created. The key here is to understand that subpartitions of all the indexes are affected, not just a few. Therefore there is no management advantage in creating multiple index tablespaces for all indexes. Rather we will simplify the process by putting a specific named subpartition of all the indexes in a single tablespace.
The tablespaces are created with a single datafile named after the tablespace with the numbers 01 appended to it, e.g. y03q3_cust1_data_01.dbf. The files are initially created with a very low value such as 500MB and with AUTOEXTEND ON NEXT 500MB. Since it is difficult to know exactly how much data is going to in the subpartition of the summary table, we defined the datafile at a low size and let it grow if need be. The numbers 01 are placed just in case another file needed to be added to this tablespace, to get around the unix file size limitation. The tablespaces are created as locally managed with Automatic Segment Space Management (ASSM) as follows.

create tablespace y03q3_cust1_data

datafile ‘/oradata/y03q3_cust1_data_01.dbf’

size 500m

autoextend on next 500m

extent management local

segment space management auto

/

Now that we have the tablespace names decided, we will put them in the DDL script. The DDL for the tables will look very similar to the following.

CREATE TABLE TAB1

(…)

PARTITION BY RANGE (CLAIM_DATE)

SUBPARTITION BY LIST (CUST_NAME)

(

 PARTITION Y03Q1 VALUES LESS THAN (TO_DATE(‘2003/04/01’,’YYYY/MM/DD’)),

 (

 SUBPARTITION Y03Q1_CUST1 VALUES (‘CUST1’) TABLESPACE Y03Q1_CUST1_DATA,

 SUBPARTITION Y03Q1_CUST2 VALUES (‘CUST2’) TABLESPACE Y03Q1_CUST2_DATA,

 … and so on for all subpartitions …

 SUBPARTITION Y03Q1_DEF VALUES (DEFAULT) TABLESPACE USER_DATA

),

 PARTITION Y03Q2 VALUES LESS THAN (TO_DATE(‘2003/07/01’,’YYYY/MM/DD’)),

 (

 SUBPARTITION Y03Q2_CUST1 VALUES (‘CUST1’) TABLESPACE Y03Q2_CUST1_DATA,

 SUBPARTITION Y03Q2_CUST2 VALUES (‘CUST2’) TABLESPACE Y03Q2_CUST2_DATA,

 … and so on for all subpartitions …

 SUBPARTITION Y03Q2_DEF VALUES (DEFAULT) TABLESPACE USER_DATA

),

 … and so on for all the partitions …

 PARTITION DEF VALUES LESS THAN (MAXVALUE),

 (

 SUBPARTITION DEF_CUST1 VALUES (‘CUST1’) TABLESPACE USER_DATA,

 SUBPARTITION DEF_CUST2 VALUES (‘CUST2’) TABLESPACE USER_DATA,

 … and so on for all subpartitions …

 SUBPARTITION DEF_DEF VALUES (DEFAULT) TABLESPACE USER_DATA

)
)

The Default partitions are not expected to hold data; so they are placed in the user’s default tablespace, named USER_DATA.
The indexes can be created in the same manner.

CREATE INDEX IN_TAB1_01

ON TAB1 (COL1)

LOCAL NOLOGGING

(

 PARTITION Y03Q1 (

 SUBPARTITION Y03Q1_CUST1 TABLESPACE Y03Q1_CUST1_INDX,

 SUBPARTITION Y03Q1_CUST2 TABLESPACE Y03Q1_CUST2_INDX,

 … and so on for all subpartitions …

 SUBPARTITION Y03Q1_DEF TABLESPACE USER_DATA

),

 PARTITION Y03Q2 (

 SUBPARTITION Y03Q2_CUST1 TABLESPACE Y03Q2_CUST1_INDX,

 SUBPARTITION Y03Q2_CUST2 TABLESPACE Y03Q2_CUST2_INDX,

 … and so on for all subpartitions …

 SUBPARTITION Y03Q2_DEF TABLESPACE USER_DATA

),

 … and so on for all the partitions …

 PARTITION DEF (

 SUBPARTITION DEF_CUST1 TABLESPACE USER_DATA,

 SUBPARTITION DEF_CUST2 TABLESPACE USER_DATA,

 … and so on for all subpartitions …

 SUBPARTITION DEF_DEF TABLESPACE USER_DATA

)
)

Note how we have used the appropriate tablespaces for the indexes.
Building a DDL Script

From our earlier discussion, remember we wanted to build an infrastructure for ETL operations, which includes the DDL scripts for creation of the tables and indexes. Since we have about thirty customers and data from 1999, amounting to about 18 quarters for each customer, we have roughly 360 subpartitions for each table and indexes. With ten tables, it comes to 7,200 tablespaces to be created!

Creating DDL scripts for 7,200 tablespaces, ten tables, about hundred odd indexes with 360 subpartitions (the DDL scripts for tables run about the size of this whitepaper) seem pretty daunting. Building a script by hand seems to be impossible and even more so when we throw in maintenance operations like dropping and adding subpartitions and partitions. How do we resolve this issue?
If you notice carefully, our design is based on a predictable pattern in naming of the objects. All the tables have exactly the same storage clause and all indexes have the same clause too. Therefore it is possible to build a combination of PL/SQL and unix shell script to generate all these storage clauses. The rest of the scripts are static.

The static portion of the scripts was placed in a separate file. The variable part was generated by the appropriate script and then both the parts were concatenated to form the complete DDL. When a partition is added or deleted, the same can be done in the generation script so that that portion is not added. By carefully using a naming convention and using same storage values, we can suddenly reduce the seemingly daunting task into a manageable piece.
Constraints
Most of the constraints in DW are not defined to enforce something – such as a unique constraint to enforce uniqueness; that is guaranteed by the ETL process. The following type of syntax is expected when the constraint is created in the DW.
ALTER TABLE … ADD CONSTRAINT …

RELY DISABLE NOVALIDATE;

Note the clauses used which have been explained below.

Validate/Novalidate

A constraint can be declare as one of the above two clauses. This is perhaps better explained through an example. Let’s assume a table TAB1 has a column called STATUS. The current rows in the table have the values in the column – ACTIVE, INACTIVE and FAILED. If we decide to create a constraint to check the value in this column to be in (‘ACTIVE’,’INACTIVE’), the constraint can’t be created, since the value FAILED is present and the constraint can’t be defined (or enforced) with an non-conforming value. However, if the constraint is defined as NOVALIDATE, this is possible. In this clause, Oracle does not validate what is already inside the table. In DW environments it is particularly useful. When a constraint is defined, generally Oracle does a validation check to ensure the conformance. In DW databases, due to the sheer size, this process may take several hours, perhaps days. Using a proper ETL technique, we can determine that the data is already validated, so a further validation is wastage of time and resources. Using the NOVALIDATE clause ensures the validation process is not run.
Enable/Disable

A constraint, when defined becomes ENABLED by default. For instance, in the earlier case, the check constraint, when defined, will not allow a row with a value in the STATUS column as FAILED. However, if the constraint is defined as DISABLE, the constraint is not enforced, i.e. the value is allowed.

This raises an interesting question – why would you ever have a need to have a disabled status. The values in the DW are generally expected to be pure after the massaging by the ETL process; therefore the use of the constraint is not required for the data integrity. If the constraint is enabled, it has to check the integrity whenever data is inserted. In a DW database, data is generally loaded in bulk, and time to load is very short; therefore disabling the constraint check to gain time makes perfect sense.

However, if the constraint is disabled, why should it be present after all? Isn’t it easier just to drop it? No, the constraints also serve another purpose – metadata. Foreign key constraints define the relation between tables, which may be used by a DDL generator tool, or a designer tool like ERWin to generate data dictionary diagrams. The information contained in check constraints provides valuable insights into the data. For instance if a check constraint shows (‘A’,’I’), without selecting the actual data we can easily infer that the valued contained within are either A or I.
RELY
If a constraint is both DISABLE and NOVALIDATE, there is absolutely no guarantee that the data integrity is maintained. However since the DW database is loaded by ETL processes and no random user interaction occurs, it makes sense to assume that the data is indeed accurate and integrity is maintained. In this case, we can instruct Oracle that the constraints are indeed valid and can be relied upon. This is done by the clause RELY.
The next question is why we should go to the trouble of defining a constraint as RELY. The most important reason is query rewrite. For query rewrite to occur the constraints must be in place and should be in RELY state. The query rewrite is described later.

Views
This brings us to the topic of the actual ETL process. To facilitate the process, we will define several views corresponding to the Summary tables in the DW. These views are created in the customer schema in the OLTP source database. Assume the summary table in DW looks like this.
CUST_NAME

CLAIM_DATE

PROVIDER_ID

NUM_CLAIMS

NUM_LINES

The corresponding view looks like

SELECT

 ‘CUST1’ AS CUST_NAME,

 CLAIM_DATE,

 PROVIDER_ID,

 COUNT(DISTINCT CLAIM_ID) AS NUM_CLAIMS,

 COUNT(*) AS NUM_LINES

FROM ….

GROUP BY …

This view is self explanatory but we will attempt to explain some important points. Note how the CUST_NAME column is hard coded to CUST1. Since the view exists on the customer schema on the source database, there is no clear direction as to what to what we will call the source. The schema name may be used, but in this case we couldn’t, due to the standardized names. Therefore the CUST_NAME was hard coded.

Needless to say, this view was created in Oracle database sources only.

CTAS ETL

Now we will visit the actual ETL process. For the sources which are on Oracle database, we have a created a database link to the database using the standard
create public database link custdb1 using ‘custdb1’;

Note, no user name and password are used. A user from DW using this db link has to use the same username and password on the source side. In order to do that, we will create a user named, say DWUSER on both the Datawarehouse and the source databases, with the same password. The user on the customer databases must be granted privileges to select from the view defined earlier. Once this is done, the user on DW can use the following query to pull all the data from the view using the statement
select * from custschema.vw1@custdb1;

This assumes the customer schema is named CUSTSCHEMA, the view is named VW1 and the db link is CUSTDB1.

Now, this can be used to create a temporary table on the DW side
create table temptable as

select * from custschema.vw1@custdb1;

This creates a table TEMPTABLE identical to the view VW1, with the same data.
Once the view is in place, the real ETL can start. On a typical operation, only one subpartition of a table on DW is actually refreshed – for a particular customer and quarter, not all.

The first task is to create a table identical to the main table, but not partitioned. This is done by creating table as select (CTAS) from the view on the customer database, filtering on the claim_date column so that only data pertinent to the subpartition is selected, not all. This table is created on the same tablespace the subpartition exists. For instance, we want to refresh data for Customer CUST1 for Year 2003 Quarter 1. This can be done by issuing

CREATE TABLE TAB1_Y&&YY.Q&&Q._&&CUST

TABLESPACE Y&&YY.Q&&Q._&&CUST._DATA

PARALLEL 8 NOLOGGING

AS

SELECT …

FROM &&CUST..VIEW1@&&DBLINK

WHERE CLAIM_DATE >=

ADD_MONTHS(TRUNC(TO_DATE('&&YY','RR'),'YYYY'),

 3*(TO_NUMBER('&&Q')-1))

AND BATCH_DATE <

 LAST_DAY(ADD_MONTHS(TRUNC(

 TO_DATE('&&YY','RR'),'YYYY'),

 3*(TO_NUMBER('&&Q')) -1)) + 1

Note the use of variables which are passed the appropriate values: YY = 03, Q = 1, CUST = CUST1 and DBLINK = CUSTDB1. Using a script like this, with variables, helps us in building a generic ETL solution. Simply by passing the appropriate values to the script allows us to create several other tables.

Casting

Before we go further, we have to observe a very important issue here. Since the data is coming from several sources with varying data types and data precisions, it is likely that the source may not match the target. A good example is the hard coded value for CUST_NAME. Since the constant ‘CUST1’ was used, the data type defaults to CHAR, not VARCHAR2. The column in the target table is VARCHAR2(20), So it will cause a problem. This problem is resolved by the CAST function used below.

SELECT CAST(‘CUST1’ AS VARCHAR2(20)) AS CUST_NAME

This expression creates a column called CUST_NAME with the data type VARCHAR2(20), not CHAR.
Massaging

Next, we will massage the table just created. Some columns may have been declared NOT NULL but NULLABLE on the main table. This needs to be removed. The following script does it.
define TAB_NAME = &1

set serveroutput on size 99999

declare

 v_sql varchar2(2000);

 p_table_name varchar2(200) := upper('&TAB_NAME');

begin

 for crec in

 (

 select column_name

 from user_tab_columns

 where table_name = p_table_name

 and nullable = 'N'

) loop

 v_sql := 'alter table '||p_table_name||

 ' modify ('||crec.column_name||' null)';

 dbms_output.put_line('SQL='||v_sql);

 execute immediate v_sql;

 end loop;

end;

/

undefine TAB_NAME

The Table name is passed to this query and the all the columns are made nullable on this table. In addition to this we also have to make some data types consistent. CAST operation does not work well for the NUMBER datatype. Therefore to make the columns similar, we can run the following script.
define PART_TAB_NAME = &1

define TAB_NAME = &2

set serveroutput on size 99999

declare

 v_sql varchar2(2000);

 pt_table_name varchar2(200) := upper('&PART_TAB_NAME');

 t_table_name varchar2(200) := upper('&TAB_NAME');

 pt_data_length number;

 pt_data_precision number;

 pt_data_scale number;

 pt_data_type varchar2(106);

 maxlen number;

 maxprec number;

 maxscale number;

 chgtab varchar2(200);

 l_col_name varchar2(200);

begin

 for crec in

 (

 select column_name, data_type, data_length, data_precision, data_scale

 from user_tab_columns

 where table_name = t_table_name

) loop --{

 v_sql := null;

 l_col_name := crec.column_name;

 select data_length, data_precision, data_scale, data_type

 into pt_data_length, pt_data_precision, pt_data_scale, pt_data_type

 from user_tab_columns

 where table_name = pt_table_name

 and column_name = crec.column_name;

 if (pt_data_type = 'VARCHAR2') then --{

 if (

 (pt_data_length != crec.data_length) or

 (pt_data_type != crec.data_type)

)

 then --{

 chgtab := t_table_name;

 maxlen := pt_data_length;

 if (crec.data_length > pt_data_length) then

 maxlen := crec.data_length;

 chgtab := pt_table_name;

 end if;

 v_sql := 'alter table '||chgtab||

 ' modify ('||crec.column_name||' '||

 pt_data_type||'('||

 maxlen||'))';

 end if; --}

 elsif (pt_data_type = 'NUMBER') then --}{

 if

 (nvl(pt_data_scale,99) != nvl(crec.data_scale,99)) or

 (nvl(pt_data_precision,99) != nvl(crec.data_precision,99))

 then --{

 if (pt_data_precision is null) then --{

 v_sql := 'alter table '||t_table_name||

 ' modify ('||crec.column_name||' '||

 pt_data_type||')';

 else --}{

 if (pt_data_scale is null) then --{

 v_sql := 'alter table '||t_table_name||

 ' modify ('||crec.column_name||' '||

 pt_data_type||

 '('||pt_data_precision||')';

 else --}{

 maxprec := pt_data_precision;

 maxscale := pt_data_scale;

 chgtab := t_table_name;

 if (crec.data_precision > maxprec) then

 maxprec := crec.data_precision;

 chgtab := pt_table_name;

 end if;

 if (crec.data_scale > maxscale) then

 maxscale := crec.data_scale;

 chgtab := pt_table_name;

 end if;

 v_sql := 'alter table '||chgtab||

 ' modify ('||crec.column_name||' '||

 pt_data_type||'('||

 maxprec||','||

 maxscale||'))';

 end if; --}

 end if; --}

 end if; --}

 end if; --}

 if v_sql is not null then --{

 begin

 dbms_output.put_line('Exec SQL='||v_sql);

 execute immediate v_sql;

 exception

 when OTHERS then

 null;

 end;

 end if; --}

 end loop; --}

exception

 when NO_DATA_FOUND then

 dbms_output.put_line('PTable Column Missing: '||

 l_col_name);

end;

/

undefine PART_TAB_NAME

undefine TAB_NAME

Again, by passing the appropriate values we can reuse this script.

Index Creation
The next task is to create any indexes on the table. The indexes are to be identical to the indexes on the main table and the tablespace used is the same tablespace where the corresponding subpartitions of the indexes are present.
Analyzing

Next, we will analyze the table to collect the statistics. This can be done using the DBMS_STATS package as follows
dbms_stats.gather_table_stats (

 ownname => ‘DWOWNER',

 tabname => '&&TABNAME',

 estimate_percent => dbms_stats.auto_sample_size,

 method_opt => 'FOR ALL INDEXED COLUMNS SIZE AUTO',

 degree => dbms_stats.default_degree,

 cascade => TRUE);

This script uses variables which can be passed appropriate values.

Subpartition Exchange

After the table is created, massaged and analyzed, it can be placed at the location of the subpartition.
alter table tab1

exchange subpartition &SUBPARTNAME

with table &TABNAME

including indexes

without validation
Note the use of variables again, making this a generic script. It exchanges the subpartition of the table and all the indexes with the newly created table and the indexes on that table. Since we know for sure that the data contained within fulfills the requirement of the subpartition, we can use the clause so that a further validation is not done, saving time.
After this step the data inside the subpartition is refreshed with the new data from the source. Since the exchange process merely updated the pointers to the segment, and no data movement actually takes place, this process is extremely fast and does not generate any redo. The only redo generated is for the data dictionary changes, which is minimal. The very operation of exchange takes perhaps about second or so, during which the table is not accessible; otherwise the table is accessible at all times, satisfying our requirement of almost-100% uptime.

After this step the temporary table contains the data from the old subpartition of the table. This can be dropped to conserve space.

External Tables ETL

The above process works when the source database is Oracle and a direct link to it is allowed. Sometimes it s not the case, i.e. the database is non-Oracle such as DB2 or the permission to create a direct db link is not available. In that case external tables may be used in the ETL operation.
The external site may create a flat file containing the data which is shipped (via ftp, sftp, http, or by media mechanism such as tape) to the datawarehouse server. An external table can be created on the file. Then the temporary table is created by select * from external_table. The rest of the process is similar to the CTAS ETL Process.
While creating external tables, the choice can be made between fixed format or delimited files. Fixed format wastes space but we have seen that the performance is substantially better in a fixed format file.
Materialized Views

The MVs are created from the main tables using an option called ON PREBUILT TABLE. In this option, a table is first created and then the table is converted into a materialized view. This step was designed for two specific reasons:
The creation of the table with all the partitioning and subpartitioning clauses was easier this way. The creation of a MV directly would have been difficult.

The partitions (actually subpartitions) of the MV were build piece by piece, not all at one. This was done in such a way that the data was available from the source system during which the subpartition for that customer was built, taking into account factors like load on the souerce system, the load on the DW, the traffic between the DW and customer sites, etc. Buiulding the entire MV at one shot would have been difficult.

Second, the creation of MVs added flexibility in the way the MVs were administered. If the MV is dropped, the underlying table remains still. This allowed a quick removal of the MV for such operations as adding a column, or altering a column possible without dropping or recreating the MV. This technique was developed by me earlier; the details can be found on www.proligence.com/painless_alter.pdf. This method was so successful that even during planned downtimes, such as alteration of master tables, the downtime was brought down from somewhere around 4 hours to just under 5 minutes!

In this approach, the MV is built as a table first and then the MV is built on it using

CREATE MATERIALIZED VIEW MV1

ON PREBUILT TABLE

AS

SELECT ….

Note the name of the MV is exactly the same as the table, MV1. Since the table is built already, this operations merely makes the segment (actually several segments, since there are subpartitions) to an MV. Therefore it is extremely quick.

The MVs are partitioned exactly the same as the tables – range partitioned on the claim_date and list subpartitioned on cust_name. The subpartition of the MVs also reside on the same tablespace as their parent tables. For instance, the subpartition Y03Q3_CUST1 of the materialized view MV1 is located in the tablespace Y03Q3_CUST1_DATA, which also houses the same subpartition of all the other materialized views. The subpartition Y03Q3_CUST1 of the indexes on all MVs are also located on the tablespace Y03Q3_CUST1_INDX, just like the indexes of the parent tables.

This arrangement may seem inefficient, but in reality it offers much administration advantages. Since the partitioning schemes of the parent tables and the MVs are identical, whenever a drill down occurs from the MV to the tables, the same partitions are accessed, which might be in the data block buffers already. This reduces the physical IOs. Similarly when the parent tables and the MVs are joined in a query, partition pruning can occur – making the query efficient.
The idea behind keeping the equivalent subpartitions of the parent and the MVs on the same tablespace is to reduce the chance of a failure affecting a lot of customers and quarters. For instance, if the tablespace containing data for customer CUST1 in Year 2003 Quarter 3 is unavailable for some reason, the data for the table is unavailable; but at that time the data in the MV for that segment is not required too. Parent table and MV should be available together or not at all; there is no advantage in having one up while the other is down. Due to this nature of the requirement, they were kept in the same tablespace, so that the total number of tablespaces can be reduced.

While refreshing a table’s subpartitions, only the equivalent subpartition of the MV needs refreshing, not the entire one. This offers significant advantages in reducing the downtime during the refresh process. While refreshing the MV, an approach similar to the table refresh is employed, i.e. a temporary table is created first, massaged, analyzed and then exchanged with the subpartition of the MV. The subpartition exchange of the MV and the table occur at the same time, therefore there is no chance of the MV getting stale.

Query Rewrite

This is an important part of any data warehouse. A user typically issues a query
SELECT COUNT(*) FROM TAB1 WHERE CUST_NAME = ‘CUST1’
However the same information can be obtained from the materilzied view MV1 by issuing

SELECT COUNT(*) FROM MV1 WHERE CUST_NAME = ‘CUST1’
Simply because the materialized view MV1 is rolled up from the table TAB1. By selecting from the materialized view as opposed to the table, the query can run more efficiently since the number of blocks are less in the former. Oracle can automatically rewrite the users original query to select from the materilzized view instead, by a process known as Query Rewrite.

For this to occur, the following parameter should be set in the initialization file

QUERY_REWRITE_ENABLED = TRUE

In addition, the materialized view must have been created with ENABLE QUERY REWRITE option as follows

CREATE MATERIALIZED VIEW MV_SPECIALTY_CLAIM

ON PREBUILT TABLE

REFRESH COMPLETE ON DEMAND

ENABLE QUERY REWRITE

AS

SELECT …

FROM …

GROUP BY …

Note the clause enable query rewrite in the above statement. This makes this MV a candidate QR. The user should have the privilege to perform the rewrite. The privilege is granted by
GRANT QUERY REWRITE TO SCOTT;
However, how does Oracle decide when to rewrite a query? Selecting from an MV when the intention was to select from the parent table is not always desirable – since the MV might be stale. Therefore the data retrieved from there may be actually incorrect. By default, if an MV is stale, the query rewrite does not occur; however in some circumstance the selection from a stale MV may be acceptable, since it may give a figure that is not completely accurate but close. In this case the following parameter can be set in the init.ora
QUERY_REWRITE_INTEGITY = STALE_TOLERATED
This will enable QR on a stale view. The default is ENFORCED, which prevents QR on stale MVs.

How to Check if QR Occurred

This is a common question. The query seems to be able to do the QR, but does it actually? The answer can be found by using a built in package dbms_mview as follows:

DBMS_MVIEW.EXPLAIN_REWRITE
 (‘SELECT CUST_NAME, COUNT(*) FROM SUMMTAB1 GROUP BY CUST_NAME’);

In this example we are trying to see if by selecting from the tale SUMMTAB1 will actually select from the MV defined on that table. After the statement is issued, we check the table REWRITE_TABLE as follows.

SELECT MESSAGE FROM REWRITE_TABLE;

This table shows two records as follows:
QSM-01033: query rewritten with materialized view, MV_SUMMTAB1

QSM-01101: rollup(s) took place on mv, MV_SUMMTAB1

Query Rewrite indeed occurred; Oracle rewrote the query to select from the materialized view MV_SUMMTAB1 instead.

Adding Quarters

A normal part of the data warehouse expansion is addition of data. When a quarter ends, the need arises to add another partition to hold the new quarter. This is done by splitting the Default partition to two parts – the partition for the new quarter and the default partition. At the same time, to preserve space, the oldest quarter may be deleted. This can be done by simply dropping the partition corresponding to the oldest quarter, an operation that takes a few seconds as opposed to several hours for a deletion routine.

The addition of a partition can also be done by adding the partition, not just by splitting the default one. The default partition was deliberately added to make sure that just in case there was a need to load data and the partitions for the new quarter is not ready, perhaps due to space unavailability, or other factors.

The following script des the partition splitting.

alter table &&MAIN_TABLE

split partition def

at (to_date('&&sp_var','dd-MON-yyyy'))

into

(

 partition Y&&YEAR.Q&&QUARTER,

 partition DEF

)

As usual we used variables to make the script more generic. This also splits the indexes. The new partitions, of both tables and indexes, are created in the user’s default tablespace. This is not important since when they are swapped with the temporary tables, the tablespace of the temporary tables will become the tablespace of the new partitions.
Adding Customers

When a customer is added, the default subpartition in each partition is split into two – the subpartition for the new customer and the default one. The following script splits all the subpartitions of all the tables. While splitting the subpartitions, the index subpartitions are split too; but the new ones are created n the user’s default tablespace, not the original tablespace they were in. They have to be moved to the new tablespace location. This script does that, too. The folwling script produces a script called _cust_subpart.sql, which has to be run after this to actually perform the operation.

define table_name = &1

define CUST_NAME = &2

set serveroutput on size 999999

set feed off

set verify off

set lines 300

set trimspool on

spool add_cust_subpart.sql

declare

 l_table_name varchar2(40) := upper('&table_name');

 cust_name varchar2(40) := upper('&CUST_NAME');

 default_ts varchar2(40) := 'USER_DATA';

 ts_prefix varchar2(3):= null;

 part_name varchar2(40);

 index_name varchar2(40);

 old_subpart_name varchar2(40);

 new_subpart_name varchar2(40);

 old_tablespace varchar2(40);

 new_tablespace varchar2(40);

 ind_tablespace varchar2(40);

 lineout varchar2(400);

 yq char(5);

begin

 for subpart_rec in

 (select subpartition_name, tablespace_name, high_value, partition_name

 from user_tab_subpartitions

 where table_name = l_table_name

 order by subpartition_name) loop

 part_name := subpart_rec.partition_name;

 if (subpart_rec.high_value = 'DEFAULT') then

 old_subpart_name := subpart_rec.subpartition_name;

 old_tablespace := subpart_rec.tablespace_name;

 yq := substr(old_subpart_name,1,(instr(old_subpart_name,'_')-1));

 if (part_name='DEF') then

 new_tablespace := default_ts;

 new_subpart_name := 'DEF_'||cust_name;

 else

 new_tablespace := ts_prefix||'_'||cust_name||'_'||

 yq||'_DATA';

 new_subpart_name := yq||'_'||cust_name;

 end if;

 lineout := 'alter table '||l_table_name;

 dbms_output.put_line(lineout);

 lineout := 'split subpartition '||old_subpart_name;

 dbms_output.put_line(lineout);

 lineout := 'values ('''||cust_name||''')';

 dbms_output.put_line(lineout);

 lineout := 'into ';

 dbms_output.put_line(lineout);

 lineout := '(subpartition '||new_subpart_name||

 ' tablespace '||new_tablespace||',';

 dbms_output.put_line(lineout);

 lineout := 'subpartition '||old_subpart_name||

 ' tablespace '||old_tablespace||')';

 dbms_output.put_line(lineout);

 lineout := '/';

 dbms_output.put_line(lineout);

 for index_rec in

 (select index_name from user_indexes where table_name = l_table_name)

 loop

 index_name := index_rec.index_name;

 if (new_subpart_name not like 'DEF_%') then

 ind_tablespace := ts_prefix||'_'||cust_name||'_'||yq||'_INDX';

 lineout := 'alter index '||index_name||

 ' initrans 10 maxtrans 30;';

 dbms_output.put_line(lineout);

 lineout := 'alter index '||index_name||' rebuild subpartition '||

 yq||'_'||cust_name;

 dbms_output.put_line(lineout);

 lineout := 'tablespace '||ind_tablespace;

 dbms_output.put_line(lineout);

 lineout := '/';

 dbms_output.put_line(lineout);

 end if;

 end loop;

 end if;

 end loop;

end;

/

spool off

undefine table_name

undefine CUST_NAME

After a combined quarter and customer addition, the table may look like the figure below. The new ones are in yellow.

[image: image2.wmf]

Backup

Next important piece to design was the backup. As per the requirement, the backup has to have a reduced need for tapes and other media. The current RMAN backup was placing a lot of strain on the system.

In this proposed design, you would have noticed that the storage elements are subpartitions, not partitions. Therefore older partitions which couldn’t be made read only due to the presence of too many customers that may have live data, no longer need to be so. The subpartitions corresponding to the older dates for many customers who no longer have the need to have the data modified are made READ ONLY. A read only tablespace can be backed up only once, not several times.
The design was to make the tablespaces containing the non-live subpartitions read only and ten copy the files to tape. Since there is no need to make these tablespaces read write ever, the backup is good for ever. After the first backup, these tablespaces are never backed up. This left only the tablespaces containing the subpartitions of the data that can be modified to be backed up via RMAN – a substantially reduced set compared to the earlier one.

Archival and Purging

The requirement called for easy archival, purge and restore of segments. In this case, since the segments are independently defined for customers and quarters – it was quite easy to purge, which meant merely dropping the subpartition from the table.
However, the data must be archived before being purged; and this archived data must be able to be restored quickly, often within one hour. This proved to be a challenge. The best option is to use Transportable Tablespaces to transport and store the data files of the archived tablespaces in some kind of removable media such as CDROM or tape; but the limitation of transportable tablespace that a single subpartition (or partition) cannot be transported prevented the feasibility of that option.
To circumvent the problem, the subpartitions are converted to tables first. Initially an empty table is created on the same tablespace the subpartition is on as SELECT * FROM MAINTABLE WHERE 1=2, which creates a non-partitioned table identical to the main table but with no data. This table is then exchanged with the subpartition, which is almost immediate. Next the subpartition is dropped. The only occupant of the tablespace at that time is the independent table with the data from the subpartition. This is made READ ONLY and then the tablespace is transported off.

Before transporting the tablespace, make sure it can be transportable. This is done by issuing

DBMS_TTS.TRANSPORT_SET_CHECK (<DataTS>,<IndexTS>) ;
Both the index and data tablespaces have to be transported at the same time; therefore both have been named above. After the package is executed, it inserts the records into a table of the results. This table is selected then.
SELECT * FROM TRANSPORT_SET_VIOLATIONS;
If the tablespaces can be transported, the above should return no rows. If some violation occurs, correct that before continuing. The export is done by the follwong parameter file.
TRANSPORT_TABLESPACE=y

TTS_FULLCHECK=Y

FILE=‘<FileLocation>/exp<TS>.dmp’

TABLESPACES=(<DataTS>, <IndexTS>)

After the export, the datafiles for the tablespaces and the export dump file created above is copied to an archival medium like a CD, a tape or inexpensive Serial ATA disks. Then this tablespace can be dropped.
DROP TABLESPACE <TSName> INCLUDING CONTENTS AND DATAFILES;

This deletes the datafiles of the tablespace too.

When the need to restore comes, the process is reversed. The tablespace is transported back into the database, otherwise known as plugging into the database. The plugging is effected through the import utility.

· First the files are copied from the media, just mounted so that the database can access them.

· Next the default subpartition is split to create the subpartition to be restored.

· The tablespace is then imported into the database using the import utility. Here is how the import parameter file looks like.
TRANSPORT_TABLESPACES=Y

TABLESPACES=(<DataTS>,<IndexTS>)

DATAFILES=(…)

· This reinstates the table created earlier. This table is then exchanged with the subpartition that was created.

· The temporary table is dropped.

Using the Serial ATA drives, there is no need to actually copy anything; mere mounting the drives is enough for the host to read them. The process of plugging the tablespace back into the database takes about 10 minutes now, with this approach.
Resumable Statements

This enhancement of Oracle 9i is sometimes means the difference between the success and failure of a lng process such as loading data or building index. Some of the more common problems encountered during the index creation are related to temporary tablespace – specifically running out of space in them. Often an index creation might run for a large number of hours and then suddenly stop due to the filling of the temp segments. The DBA has to run that once again.
The introduction of Resumable Statements alleviated the problem. The session can enable this option; and when some problem occurs that can be corrected, such as space errors, the session simply pauses; not error out. If this problem condition is corrected, the session then resumes the operation.

The option is enabled by issuing

ALTER SESSION ENABLE RESUMABLE NAME ‘Job1’;
In this case, the operation if stopped, is shown in a view DBA_RESUMABLE. The column NAME in that view shows the value of the parameter NAME in the ALTER SESSION statement. The clause NAME is optional; but is placed it is easier to track in the view. The other important columns of the view are
View DBA_RESUMABLE

NAME – Name specified in ALTER SESSION

COORD_SESSION_ID – If the sql statement involves Parallel Query, as most index creation statements do, the actual work is done by several slave sessions governed by a single Query Coordinator. This column shows the SID of the Session that assumes the role of co-ordinator.
SQL_TEXT – The text of the SQL.
STATUS – Te current status of the operation is shown here. Valid values are RUNNING, SUSPENDED, ABORTED, ABORTING, TIMEOUT.
ERROR_NUMBER/ERROR_MSG – This shows the exact error message that caused the session to pause. This is useful in correcting it.
Conclusion
Using just Oracle 9i Release 2 and the common tools that come with it, i.e. PL/SQL and SQL*Plus, along with the available unix Shell Scripts, we built a robust data warehouse, satisfying all requirements. This should be an encouragement for anyone mulling over creating a large data warehouse in Oracle but is concerned about the potential problems and the cost of the third party tools.
About the Author

Arup Nanda has been Oracle DBA for last 10 years, experiencing all aspects of database administration along the way – from modeling to performance tuning to disaster recovery planning. He is the founder of Proligence (www.proligence.com), a New York area based company that provides specialized Oracle database services like replication, disaster recovery, parallel server, among others. Arup is an editor of SELECT, the journal of International Oracle User Group. He has written Oracle technical articles in several national and international journals and is a regular presented in several Oracle technology conferences. He is also a Director of Connecticut Oracle User Group. An updated copy of this paper may be found on www.proligence.com.
Paper # 36605 Page 2

_1106394116.doc
[image: image1.png]ustome:
W

J
]“.‘fc‘}‘i“"
J
i

ustome:
WER

DeF

v 1 v

Quarter 1 Quarter 2 Aeksast

_1106394278.doc
[image: image1.png]ustomer
W

ustomer
PeTX

ustomer
WEA

DROPHED

ustomer
Mo

DeF

VX1 =
Quarter 1 Quarter 2 Quarter 3 [Boundary of the

Main Table

