
Fine Grained Access Control
Arup Nanda, Proligence, Inc.

Introduction

Just as a picture is worth thousand words, it’s my belief that even the most complex of concepts or features can be easily
explained through an example, where the reader has the ability to test out the concepts while reading them online.
Following my own convictions, I will explain the concepts and uses of this powerful feature of the database using an
example of a hospital database.

The application that the hospital uses must adhere to the HIPAA regulations and one of the mandates is to allow viewing
of patient data only to the people who need them and have authorization for. This means the doctors can access the data
on just those patients they are treating, not all. In the old days, this could have been done using a simple filtering predicate
in the application queries. This is not practical for a variety of reasons – the primary of which is the modification of a
large number of SQL statements inside the application. In case of third party canned applications, this is even more
difficult, with the source code controlled in a different place outside the control of the hospital.

The other problem is security – what if the user just bypasses the applications and queries the data directly from the
database? This sidesteps the filtering predicate inside the code, allowing full access to the data. Obviously the solution
calls for the filtering predicate to be applied automatically, regardless of how the access is made.

One of the approaches is to use a view on the table with a filtering predicate built in, and allowing users to access the view
instead of the base table. This accomplishes the security requirement, but with the proliferation of the views, it might be
impractical to maintain this setup. In addition, if the need ever comes to restrict the access by the owner itself, this
solution will not work, since the owner can select from the base table. Using views also forces us to use a predicate that is
static, not generated at the runtime.

The perfect solution comes from Oracle’s implementation of Fine Grained Access Control (FGAC). It is also known as
Row Level Security (RLS) or Virtual Private Database (VPD). In this article we will explore the use of this powerful
feature in the form of an example setup, to bolster the understanding. We will also learn how to use another advanced
feature – application contexts in a database setup.

Setup

You can download the scripts to create all the objects used in this article and populate the data from my website,
www.proligence.com/pubsupp.

In our example, we have used the case of an overly simplified hospital database. Typically hospitals have several doctors
and each patient is assigned a doctor. The tables are owned by the schema HOSPITAL. The table DOCTORS holds the
information on doctors as follows.

 Name Null? Type
 ----------------- -------- ------------
 DOCTOR_ID NOT NULL NUMBER
 DOCTOR_NAME VARCHAR2(20)
 GROUP_ID NUMBER

The primary key of the table is DOCTOR_ID. It’s assumed that the column DOCTOR_NAME contains the doctor’s login
id to the database. A group may consist of several doctors. The column GROUP_ID specifies the group the doctor belongs
to.

The other important table holds information on patients visiting the hospital, named PATIENTS, shown below.

 Name Null? Type
 ----------------- -------- ------------
 PATIENT_ID NOT NULL NUMBER
 DOCTOR_ID NUMBER
 PATIENT_NAME VARCHAR2(20)
 DISEASE VARCHAR2(20)

The column PATIENT_ID is the primary key of the table. The column DOCTOR_ID is a foreign key to the table
DOCTORS shown above. For the purpose of simplicity, let’s assume that the relationship between DOCTORS to
PATIENTS is one-to-many, whereas in the real life, it is probably many-to-many.

Here is how the data looks like in the table DOCTORS.

DOCTOR_ID DOCTOR_NAME GROUP_ID
---------- -------------------- ----------
 1 DRADAM 1
 2 DRBARB 2
 3 DRCHARLIE 2

And here is the data in table PATIENTS.

PATIENT_ID DOCTOR_ID PATIENT_NAME DISEASE
---------- ---------- -------------------- -----------
 1 1 LARRY EGO
 2 1 BILL CONTROL
 3 2 SCOTT FICKLENESS
 4 3 CRAIG LOWVISION
 5 3 LOU GREED

Corresponding to all the names of the doctors, we need to have the userids created in Oracle in the same name. Therefore,
we have the users named DRADAMS, DRBARB and DRCHARLIE, all with SELECT, INSERT, UPDATE and
DELETE privileges on the tables DOCTORS and PATIENTS.

Building the FGAC Setup

In the existing application, the following statement is a call made to the database to see the patient data.

SELECT * FROM PATIENTS;

With the new requirements in mind, the call must be changed to

SELECT * FROM PATIENTS WHERE DOCTOR_ID = <id of the doctor logged in>

We somehow have to make a system where the application need not be changed, and the first call will automatically select
only the records related to the doctor currently logged in, not all. In other words, we have to generate a filtering predicate,

i.e. a WHERE clause to be appended to he query automatically. Building this predicate is the first step. The following
function returns a string that can be applied to the query as a WHERE clause.

create or replace function get_doctor_id
(
 p_schema_name in varchar2,
 p_table_name in varchar2
)
return varchar2
is
 l_doctor_id number;
begin
 select doctor_id
 into l_doctor_id
 from doctors
 where doctor_name = USER;
 return 'doctor_id = '||l_doctor_id;
end;

Note how the function returns the string DOCTOR_ID = <id> where <id> is the numerical ID of the doctor who is
logged in now, as returned by the function call USER above.

This special function is called a policy function and is the building block of a FGAC setup. Note that this has exactly two
input arguments, for the schema and the table on which it will be applied and has exactly one return value, the string that
will be used as a WHERE clause. The structure of the policy function must be exactly this and is not flexible. The logic
can be changed inside, though.

Next step is to build a policy to be placed on a table. This policy is the one that restricts the rows accessible to the users. It
does so by applying the output of the policy function. The following code segment sets up a policy on the table
PATIENTS.

begin
 dbms_rls.add_policy
 (
 object_schema => 'HOSPITAL',
 object_name => 'PATIENTS',
 policy_name => 'PATIENT_VIEW_POLICY',
 policy_function => 'GET_DOCTOR_ID',
 function_schema => 'HOSPITAL',
 statement_types => 'SELECT, INSERT, UPDATE, DELETE',
 update_check => true,
 enable => true
);
end;

Here we have defined a policy named PATIENT_VIEW_POLICY on the table PATIENTS in schema HOSPITAL. The
policy calls the function GET_DOCTOR_ID as shown in the parameter policy_function. This policy is applied to
all types of DML statements on the table – SELECT, INSERT, UPDATE and DELETE. The other options will be
explained later.

Once the policy is in place, logon to the database as the user DRADAM and select from the table

SQL> select * from hospital.patients

PATIENT_ID DOCTOR_ID PATIENT_NAME DISEASE
---------- ---------- -------------------- --------
 1 1 LARRY EGO
 2 1 BILL CONTROL

Well what happened? There are only two rows selected from the table; but we know for a fact that the table has five rows.
However, only patients 1 and 2 are supposed to be seen by the user DRADAM, and only those were displayed. The most
important point to note here is that the user did not specify any where clause. Yet, the filtering predicate was applied
automatically, by the policy using the output from the policy function.

The user’s original query

SELECT * FROM PATIENTS

was rewritten to

SELECT * FROM
(SELECT * FROM PATIENTS)
WHERE DOCTOR_ID = 1

What if the user deletes the table, as seen below?

SQL> delete hospital.patients;

2 rows deleted.

Note, only 2 rows are deleted, not all the five. The same principle hold true – the filtering predicate is applied
automatically to the query. If the user updates the table,

SQL> update hospital.patients set disease = null;

2 rows updated.

Again, only 2 rows are updated, not all five.

Another user, DRBARB is allowed to see only patient 2. If she logs in and uses the same query:

SQL> select * from hospital.patients;

PATIENT_ID DOCTOR_ID PATIENT_NAME DISEASE
---------- ---------- -------------------- ------------
 3 2 SCOTT FICKLENESS

Notice how only one row was returned, even though the table has 5. Dr Barb was authorized to see patient 3 only and that
is what she saw.

The policy is applied regardless of how the table is accessed – through a trigger, a procedure, an application, anything. It
is as if the table contains only two rows for the user DRADAMS, not the five which are actually there. This facility
creates a window where the user always sees the rows he is supposed to see, not all, something akin to a private view of
the table. By applying the same policy to all the tables in a database, the users can see the data which they are authorized
to see only, as if they have a private database inside a real database. Hence the Fine Grained Access Control is also known
as Virtual Private Database feature.

Note how the content of the table changes depending upon the user logged in, eliminating the need for application
changes. This powerful feature makes applications developed only once; the policy dictates the filtering predicate.

In addition to example given above, FGAC has other uses in hosting companies, where multiple users share the same
database and in some cases the same table. FGAC allows the creation of several virtual databases, not physically different
ones – making the setup simpler and less expensive to maintain.

Bypassing the Restrictions

Sometimes it might be required to bypass the restrictions. For instance, we may decide to remove restrictions from the
owner of the tables. To do this, we will pass a NULL as the return value to be used as a predicate. If the value is NULL,
the policy allows all rows to be visible without restrictions. The policy function can then be rewritten as follows.

create or replace function get_doctor_id
(
 p_schema_name in varchar2,
 p_table_name in varchar2
)
return varchar2
is
 l_doctor_id number;
begin
 if (p_schema_name = USER) then
 return null;
 end if;
 select doctor_id
 into l_doctor_id
 from doctors
 where doctor_name = USER;
 return 'doctor_id = '||l_doctor_id;
end;

Note the newly added segment shown in bold. If the current user is the schema owner of the table, then the policy function
returns NULL, i.e. no filtering predicate is applied to the query.

There is a special type of system privilege called EXEMPT ACCESS POLICY used to exempt a specific user from being
subject to any kind of restriction on any of the tables. The DBA role is granted this system privilege by default; hence a
user with DBA role accessing data will not be restricted by any policy – a very important point to keep in mind while
designing applications involving FGAC.

Other Dependent Tables

So far we have talked about only one table. Suppose there is another table in the database to hold information on
treatments given to patients. Since a patient may be given treatment more than once, the table TREATMENTS, shown
below, has column to record the dates, too.

 Name Null? Type
 ----------------- -------- ------------
 PATIENT_ID NUMBER
 TREATMENT_DT DATE
 TREATMENT VARCHAR2(30)

Here are the sample data in this table.

PATIENT_ID TREATMENT TREATMENT
---------- --------- ------------------------------
 1 19-OCT-03 ASK THE ORACLE
 1 29-OCT-03 SELL THE SAILBOAT
 2 19-OCT-03 LOOK AT THE WINDOWS
 2 29-OCT-03 GIVE S/W AWAY
 3 19-OCT-03 LOOK AT THE SETTING SUN
 4 29-OCT-03 GENERATE INTEL-LIGENCE
 4 29-OCT-03 PROCESS MORE
 5 29-OCT-03 STOP MACHINES IN BUSINESS
 5 29-OCT-03 STOP INTERNATIONAL MACHINES

Applying the same principle of the FGAC, a user should be able to see only the rows allowed to be seen. For instance, Dr
Adam is allowed to only records for his patients, 1 and 2, not for all the other patients. Earlier we used DOCTOR_ID as a
filtering condition; but this table does not have the column. Therefore we have to devise a separate filtering condition.

WHERE PATIENT_ID IN (SELECT PATIENT_ID FROM PATIENTS)

Since the table PATIENTS is restricted, the list of PATIENT_IDs will be restricted too and hence this filtering condition
will work. We need to define a new policy function for this policy.

create or replace function get_patient_id
(
 p_schema_name in varchar2,
 p_table_name in varchar2
)
return varchar2
is
 l_patient_id number;
begin
 if (p_schema_name = USER) then
 return null;
 end if;
 return 'patient_id in (select patient_id from patients)';
end;

This returns the predicate in the format we want. Then we need to create a policy for this table using this function.

begin
 dbms_rls.add_policy
 (
 object_schema => 'HOSPITAL',
 object_name => 'TREATMENTS',
 policy_name => 'TREAT_VIEW_POLICY',
 policy_function => 'GET_PATIENT_ID',
 function_schema => 'HOSPITAL',
 statement_types => 'SELECT, INSERT, UPDATE, DELETE',
 update_check => true,
 enable => true
);
end;

This policy will restrict the table TRATMENTS in such a way that only the authorized rows are visible.

Update and Insert Checks

So far we have talked about restricting the policy on the value of a column name. The user DRBARB is allowed to see
only patient id 3. However, what if she issues the following update?

SQL> update hospital.patients set doctor_id = 3;
update hospital.patients set doctor_id = 3
 *
ERROR at line 1:
ORA-28115: policy with check option violation

Note the new type of error - ORA-28115: policy with check option violation. It’s raised since the user
attempted to change the very column that the table is restricted on. The user is allowed to see only records with
DOCTOR_ID = 2, changing to 3 would have removed the record from her private view of the table. The parameter
update_check in the packaged procedure dbms_rls.add_policy prevents this from happening. Setting this
parameter to FALSE will allow this update and place the row in a set inaccessible by the user.

The same thing happens when the user tries to insert a row that will not satisfy the policy for her viewing. Dr Barb tries to
insert the row with DOCTOR_ID = 3, but she is allowed to see only DOCTOR_ID = 2.

SQL> insert into hospital.patients values (6,3,'CARLY','OBSESSION');
insert into hospital.patients values (6,3,'CARLY','OBSESSION')
 *
ERROR at line 1:
ORA-28115: policy with check option violation

The same error is produced here, too.

Multiple Policies

In real life, you should probably create individual procedures for each type of access. In that case the parameter
statement_types should contain only the statement type it should be applied on, e.g. ‘INSERT’, not the list of all the
statement types. If a table has multiple policies, the predicates are ANDed, i.e. the predicates are all appended to the
original query with AND. For instance the query

SELECT * FROM PATIENTS

is rewritten to

SELECT * FROM
(SELECT * FROM PATIENTS)
WHERE <predicate clause from first policy>
AND <predicate clause from second policy>
AND <predicate clause from third policy>
………
… and so on….

Defining multiple policies makes administration tasks easier – you can enable or disable specific policies, based on need
and each policy can have a different policy function. The latter is useful when the access patterns are different for each
statement types. For instance, you could have a user perform DML on his or her patient records, but other doctors in the

same group can also have SELECT access to the records. In this case you have to define a policy for SELECT statement
type and another for the other types.

Policy Management

The previous examples showed how to add a policy. To drop the policy, the procedure dbms_rls.drop_policy can
be used. It takes the schema, table and policy names as parameters. The policies can be temporarily disabled by using the
API dbms_rls.enable_policy. It takes, in addition to these three, another parameter enable. To disable a policy,
call this with the parameter set to FALSE. To enable it, set the parameter to TRUE and execute the function.

Policy can also be managed through an Oracle Enterprise Manager component known as Oracle Policy Manager, which
provides all these functions via a GUI interface. To invoke it, just issue the following in the command line

oemapp opm

This will bring up the OPM main screen. The operations are easy to follow and intuitive.

Several data dictionary views are present for information on FGAC policies. The most common one is DBA_POLICIES.
Here is a brief description of the most important columns of the view.

Column Description
OBJECT_OWNER The schema owner who owns the object on which the policy is defined.

OBJECT_NAME The name of the object

POLICY_NAME Name of the policy

PF_OWNER The owner of the function used to enforce security of the policy.

PACKAGE Sometimes a package used to enforce the policy. This shows the name of the package if that

is the case.

FUNCTION The name of the function that is used to enforce security.

SEL Indicates whether the policy applies to select statements. A value of YES indicates that,
otherwise NO.

INS Same explanation as above, but for inserts.

UPD Same explanation as above, but for updates.

DEL Same explanation as above, but for deletes.

CHK_OPTION If the policy has been defined with an update check that will make sure the new value also
conforms to the policy after the change. A value of YES indicates that, otherwise NO.

ENABLE Indicates whether the policy is enabled. A value of YES indicates that, otherwise NO.

STATIC_POLICY Indicates whether the policy is static, i.e. the function returns the same value regardless of the

user who calls it.

Troubleshooting and Potential Concerns

Before proceeding further on the advanced topics, let’s examine some of the potential problems and their resolution. Most
of these errors produce a trace file in the user_dump_dest directory, which contains useful information for further
diagnosis. The most common problem is a badly constructed predicate generated by the policy function throwing error
ORA-28113: policy predicate has error. This occurs when the policy function generates a predicate that is
syntactically incorrect and the actual statement will be visible in the trace file. For instance, the following trace file shows
the problem statement.

PATIENT_ID IN ()
ORA-00936: missing expression

Note there is nothing inside the parentheses, which is wrong and hence the policy failed to apply. Further diagnosis must
be done on the policy function on how to correct this error.

Another error is “ORA-28112: failed to execute policy function”, which indicates that the policy
function failed at the runtime, typically due to unhandled exceptions. Luckily, the trace files generated show the exact
problem. A less common error is “ORA-28110: Policy function or package has error”, which simply
indicates that the policy function is not valid. Mere recompilation of the function will resolve the problem.

Since FGAC works by applying a predicate to the query at runtime, they cannot applied in operations that bypass the SQL
processing layer, such as Direct Path export/import, Direct Path SQL*Loader, Direct Path Inserts, etc. In the last three
cases, the operation fails with an error ORA-28116: insufficient privileges to do direct path access. The only options are
using the conventional mode of these tools, temporarily disabling the policy or using a user with EXEMPT ACCESS
POLICY system privilege. Direct path export does not fail but export is carried out in conventional mode, even if
DIRECT=Y is given. This can be seen from the informational message on the screen while export is going on.

Debugging

It might be helpful, especially during development, to see exactly the kind of predicate returned by FGAC. You can do
that in a few different ways. The simplest is to use a query like this.

select sql_text, predicate, policy, object_name
from v$sqlarea , v$vpd_policy
where hash_value = sql_hash
/

SQL_TEXT

PREDICATE

POLICY OBJECT_NAME
------------------------------ --------------
select * from hospital.patients
patient_id in (1,2,5)
PATIENT_VIEW_POLICY PATIENTS

This shows that the predicate where patient_id in (1,2,5) was appended to the original query select *
from hospital.patients. This is useful if the original query is still in the SQL area in SGA and not flushed out
yet. The view v$vpd_policy also shows a lot of other details relevant for analysis, such as the group, in case of a grouped
policy, etc.

The other option is to use an event for throwing out the details of the rewritten query. As the user DRADAM, use the
following command before selecting from the table.

alter session set events ‘10730 trace name context forever, level 12';

Then select from the table. A trace file will be generated in the user_dump_dest directory, an excerpt of which is shown
below.

*** 2003-11-19 17:32:11.508
*** SESSION ID:(23.1512) 2003-11-19 17:32:11.508

Logon user : DRADAM
Table/View : HOSPITAL.PATIENTS
Policy name : PATIENT_VIEW_POLICY
Policy function: HOSPITAL.GET_PATIENT_ID
RLS view :
SELECT "PATIENT_ID","DOCTOR_ID","PATIENT_NAME","DISEASE" FROM "HOSPITAL"."PATIENTS"
"PATIENTS" WHERE (patient_id in (1,2,5))

Note the changed query is neatly shown in the trace file. This shows exactly which predicate was generated and applied.
This is particularly useful for multiple policies applied on a table – all the predicates are visible. If the trace file is not
generated, try refreshing the policy using dbms_rls.refresh_policy packaged procedure.

Application Contexts

The above example relies on the assumption that the user accesses are limited by userid in Oracle. In some cases,
especially in web applications, the application connects to the database using a single generic userid, e.g. APPUSER. The
users such as DrAdam, DrBarb and DrCharlie are users in application, not the database. As far as the database is
concerned, the userid is APPUSER, in all cases. Hence the function USER in the policy functions defined above always
returns APPUSER and the FGAC cannot be established.

To alleviate the problem, another approach can be used using application contexts. App Contexts, simply put, are similar
to global variables, whose value once set is available in the same session. Another session can have a different value. An
App Context is actually a collection of such variables, known as Attributes. Attributes are to a context what columns are
to a table. However, unlike columns, the attributes are not defined during creation of the context; rather anyone can set
any context attribute and set a value. Also, contexts are not stored objects and they don’t consume space.

To create a context, the user should have CREATE ANY CONTEXT system privilege. After granting this privilege to
HOSPITAL, connect to the database as HOSPITAL and issue

create context app_ctx using set_app_ctx;

Note the clause, using set_app_ctx, which indicates that the attributes in this context can be assigned only by
executing a procedure called set_app_ctx. The next step is to create the procedure.

create or replace procedure set_app_ctx
(

p_app_user in varchar2
)
is
begin

dbms_Session.set_context('app_ctx','app_userid',p_app_user);
end;

Note, the above segment assigns to the attribute app_userid of the context app_ctx the value of the input parameter
p_app_user. While creating the context, we have not created any attribute; it was done during the call to dbms_Session
package, which is used to set the application contexts. Let’s set the value of the context as follows.

SQL> exec hospital.set_app_ctx ('Context1')

PL/SQL procedure successfully completed.

Once an application context is set, it can be retrieved in several ways. The following query shows all the context attributes
set in the session.

SQL> select * from session_context;

NAMESPACE ATTRIBUTE VALUE
-------------- -------------- ----------------
APP_CTX APP_USERID Context1

Note, the attribute app_userid has been assigned the value Context1 as shown above. The context is referred to as
NAMESPACE, too, as shown above. Another method to retrieve the attribute value is the following query

SQL> select sys_context('app_ctx','app_userid') from dual;

SYS_CONTEXT('APP_CTX','APP_USERID')

Context1

This method of accessing context attributes is also used in other areas. Remember the function USER

Select USER from dual;

It returns the current logged-in user. The above can also be written as

Select SYS_CONTEXT('USERENV','CURRENT_USER') from dual;

Note the use of the SYS_CONTEXT function. USERENV is a predefined context namespace and an attribute
CURRENT_USER is populated automatically.

Remember, the function set_app_ctx sets the value of the attribute, which, inside, calls the package
dbms_session.set_context. If the user calls this package directly,

SQL> begin
 2 dbms_Session.set_context('app_ctx','app_userid','Context1');
 3 end;
 4 /
begin
*
ERROR at line 1:

ORA-01031: insufficient privileges
ORA-06512: at "SYS.DBMS_SESSION", line 78
ORA-06512: at line 2

Note the error produced - ORA-01031: insufficient privileges. Even after granting the execute privileges
on the package to the user HOSPITAL, this error persists. Why so? The reason is the way the context is declared:
create context app_ctx using set_app_ctx, which means the attributes of this context can only be set
using its trusted procedure, set_app_ctx, no other way.

This important property of the attribute is useful in securing an application. Since the only way the attribute values can be
set is through the procedure, we can place all kinds of security checks inside the procedure to make sure that the context
setting is valid.

Application Users and FGAC

Going back to the problem of the FGAC in a situation where the database user is generic, but the application users must
be passed to the FGAC setup for building a correct set of rows, we can use the application contexts. In the above example
of contexts, the value of the attribute APP_USERID can be set by the application to the real user and the FGAC policy
function can retrieve the value to build the correct FGAC version of the table.

create or replace function get_doctor_id
(
 p_schema_name in varchar2,
 p_table_name in varchar2
)
return varchar2
is
 l_doctor_id number;
begin
 if (p_schema_name = USER) then
 return null;
 end if;
 select doctor_id
 into l_doctor_id
 from doctors
 where doctor_name in (USER, sys_context('app_ctx','app_userid'));
 return 'doctor_id = '||l_doctor_id;
end;

Note the line where it says

where doctor_name in (USER, sys_context('app_ctx','app_userid'));

Here the doctor_name column is not only matched against the database userid, but against the value of the attribute
APP_USERID in context APP_CTX, too.

The generic userid used is APPUSER, which is then given execute privilege on the procedure set_app_ctx. Now, the
application connects as APPUSER and sets the context attribute to the value of the real user, say DRBARB, and selects
from the table.

SQL> exec hospital.set_app_ctx('DRBARB')

PL/SQL procedure successfully completed.

SQL>select * from hospital.patients

PATIENT_ID DOCTOR_ID PATIENT_NAME DISEASE
---------- ---------- -------------------- ----------------
 3 2 SCOTT FICKLENESS

Note how only the record which DRBARB is supposed to see is shown, not all. Now change the app user to
DRCHARLIE and do the same.

SQL> exec hospital.set_app_ctx('DRCHARLIE')

PL/SQL procedure successfully completed.

SQL> select * from hospital.patients

PATIENT_ID DOCTOR_ID PATIENT_NAME DISEASE
---------- ---------- -------------------- -------------------
 4 3 CRAIG LOWVISION
 5 3 LOU GREED

We got it again! Dr. Charlie is supposed to see these patients, too.

In this way, we can set a userid to an attribute of an application context and use it inside a policy function to simulate
database users. However, the power of application context does not end here. An attribute can be setup in such a way that
it old the entire predicate, not just a few discrete values. It can also hold other values which may or may not be related to
application users. One such example is accessibility of patients unrelated to the DOCTOR_ID column. In our example, we
now have a requirement that the doctors can access data based on some authorization, not necessarily their own patients.
We now have a new table called DOCTOR_AUTHORITY as follows

 DOCTOR_ID PATIENT_ID
---------- ----------
 1 1
 1 2
 1 5

It means doctor 1 can see the patients 1, 2 and 5. Even though the doctor_id value for the patient 5 is 3, doctor 1 can still
see the patient. This requires a change in the policy function as follows.

create or replace function get_patient_id
(
 p_schema in varchar2,
 p_table in varchar2
)
return varchar
is
 l_ret varchar2(2000);
begin
 if (p_schema = USER) then
 l_ret := NULL;
 else
 l_ret := 'patient_id in ('||
 sys_context ('app_ctx','patient_id_list')||
 ')';
 end if;

 return l_ret;
end;

Here, the predicate is constructed from a list selected from the context attribute patient_id_list. This list can be constructed
by this function.

create or replace function create_patient_id_list
(
 p_doctor_id in number
)
return varchar2
is
 l_ret varchar2(200) := null;
begin
 for pat_rec in
 (
 select patient_id
 from doctor_authority
 where doctor_id = p_doctor_id
) loop
 l_ret := l_ret || ','||pat_rec.patient_id;
 end loop;
 return ltrim(rtrim(l_ret,','),',');
end;

We also have to modify the set_app_ctx procedure to set the new attribute.

create or replace procedure set_app_ctx
(
 p_patient_id_list in varchar2
)
is
begin
 dbms_Session.set_context('app_ctx','patient_id_list',p_patient_id_list);
end;

The context should be set automatically and this can be done using a logon system trigger.

create or replace trigger set_patlist_ctx
after logon on database
declare
 l_doctor_id number;
begin
 begin
 select doctor_id
 into l_doctor_id
 from hospital.doctors
 where doctor_name = USER;
 exception
 when NO_DATA_FOUND then
 null;
 end;
 hospital.set_app_ctx (hospital.create_patient_id_list(l_doctor_id));
end;

The policy has to be changed to use the new policy function. First drop the policy

Connect HOSPITAL/HOSPITAL
begin
 dbms_rls.drop_policy
 (
 object_schema => 'HOSPITAL',
 object_name => 'PATIENTS',
 policy_name => 'PATIENT_VIEW_POLICY'
);
end;

Recreate the policy using the new function.

begin
 dbms_rls.add_policy
 (
 object_schema => 'HOSPITAL',
 object_name => 'PATIENTS',
 policy_name => 'PATIENT_VIEW_POLICY',
 policy_function => 'GET_PATIENT_ID',
 function_schema => 'HOSPITAL',
 statement_types => 'SELECT, INSERT, UPDATE, DELETE',
 update_check => true,
 enable => true
);
end;

After this is setup, test the actual workings. Logon as DRADAM.

SQL> select * from session_context
 2> /

NAMESPACE ATTRIBUTE VALUE
----------------- ------------------- -------------------
APP_CTX PATIENT_ID_LIST 1,2,5

Voila! It worked. The application context was properly set. Now select from the table.

SQL> select * from hospital.patients;

PATIENT_ID DOCTOR_ID PATIENT_NAME DISEASE
---------- ---------- -------------------- ----------
 5 3 LOU GREED
 2 1 BILL CONTROL
 1 1 LARRY EGO

And it worked! All the rows that are supposed to be shown are shown in this selection, as expected.

Oracle 10g Enhancements

Oracle 10g offers significant enhancements in this area, particularly in selective control based on columns and different
types of policies to apply in different situations to enhance performance.

Relevant Columns

In the Oracle 9i and below, the policy is applied on the table unconditionally, regardless of which columns are being
accessed. Consider these three queries

1. SELECT COUNT(*) FROM PATIENTS
2. SELECT PATIENT_ID FROM PATIENTS
3. SELECT SOCIAL_SEC_NO FROM PATIENTS

The first one does not access any specific record, just an aggregation for reporting or other purpose. In some situations,
the user may be allowed to access all the records of the table PATIENTS in doing a COUNT(*), as it does not violate
privacy regulations or practices. However, the same user should not be allowed unrestricted in the second query, where a
specific element of the record, the column PATIENT_ID is accessed. In the third case, the query tries to fetch Social
Security Number of a patient, a piece of information protected by a regulation known as HIPAA. In HIPAA compliant
databases, the third query is restricted more than the second query.

As you can see, there is a need for differing restrictiveness based on the column being accessed. In the first case we need
no restriction as no columns are accessed; and in the second and third cases we want to have progressively more
restrictive policies. Oracle 10g allows that through the use of column declaration in policies.

begin
 dbms_rls.add_policy (
 object_schema => ‘HOSPITAL’,
 object_name => ‘PATIENTS’,
 policy_name => 'PATIENT_VIEW',
 function_schema => ‘HOSPITAL’,
 policy_function => ‘GET_PATIENT_ID’,
 statement_types => 'INSERT, UPDATE, DELETE, SELECT',
 update_check => TRUE,
 sec_relevant_cols => 'PATIENT_ID'
);
end;

Note the new parameter sec_relevant_cols => 'PATIENT_ID', which indicates that this policy should be
applied only when the query accesses the column PATIENT_ID, not every time. With this type of policy in place, when
DRADAM issues the query SELECT PATIENT_NAME FROM PATIENTS, he sees 5 records, which is actually the
number of records in the table. However, when he issues SELECT PATIENT_ID FROM PATIENTS, he sees only 2, the
only two he is authorized to see.

This is a very important feature in FGAC and can be used in myriads of cases where data must be made accessible only
selectively, not universally. At the same time, you must also be careful to avoid confusion and mistakes. Since the policy
restrictions are based on the columns being accessed, the results will vary and may give wrong results inadvertently.

Policy Types

In the example given for Oracle 9i, the policy function is executed every time the policy is invoked. Sometimes this may
not be necessary, as in case of a hosting company where the outcome of the policy function for a user is same, regardless
of any other factor such as time of the day, the value of some other attributes, etc. In this case, re-evaluation of the policy
function is not necessary and causes performance degradation. To address this issue, Oracle 10g has introduced a new
type of policy called static policy, where the function is not executed during every call; it is executed only once, during
parse phase and then the result is cached for future reference.

Static policy is indicated by the new parameter in dbms_rls.add_policy procedure, policy_type =>
dbms_rls.static. The parameter static_policy present in Oracle 9i is not required anymore. However, if the
value of parameter policy_type is not set, the policy is set as per the setting of the other parameter static_policy. If
static_policy parameter is set to TRUE, then the policy is static and dynamic otherwise. If both static_policy and
policy_type are set, the policy_type takes precedence. Here is a complete listing of policy types that can be passed to the
parameter policy_type. All these should be prefixed by dbms_rls, since they are actually constants defined inside the
package.

• dynamic

The policy function is always executed, during every call. This is the default.
• context_sensitive

The policy function is executed only is the program context changes. An excellent example is in an web application
where the single database connection is used by multiple sessions of the application. Every time the database session
passes from one session to the other, the context changes and the policy function is evaluated.

• shared_context_sensitive
The behavior is the same as the above, but it can be applied to more than one object.

• static
This has been described above.

• shared_static
Same as above, but it can be applied to more than one object.

As of writing of the article, Oracle 10g was yet to be released and these names were being finalized. It is quite possible
that some of the names may be different in the version released for production.

Conclusion

Fine Grained Access Control allows an existing database to be partitioned into several virtual databases that can be shown
differently to different users. The filtering of rows inside the table can be controlled by a user defined policy function, and
the string generated by the function is applied automatically to every query on the table, regardless where the user
connects from or with. This adds security to the application by showing only those rows the users are authorized for, and
also helps in maintaining an application where a separate data store is not needed.

In my book Oracle Privacy Security and Auditing, by Rampant TechPress, I have discussed these features in more detail
and explained how to build a secure application authentication system using contexts and FGAC.

About the Author

Arup Nanda (arup@proligence.com) has been an Oracle DBA for more than 10 years, working on almost kinds of
features, problems, challenges and nuances the Oracle database offers. He is the founder of Proligence
(www.proligence.com) , a New York area company offering highly specialized Oracle database solutions, security
training and auditing to customers. He has written several articles in magazines such as Oracle Magazine, Select Journal;
spoken at many conferences including Oracle World and IOUG Live and is the co-author of the book Oracle Privacy
Security and Auditing. His involvement in Oracle user community spans from being an editor of Select Journal – the
International Oracle User Group publication – to being a Director of Connecticut Oracle User Group. Recognizing his
professional accomplishments and contributions to the community, Oracle honored him with the DBA of the Year award
in 2003.

